从n个数字中选取m个数字的组合算法(不分序列)

 

#include <vector>

template<class T>
class PermutationCalculate
{
public: 
 PermutationCalculate()
 {
  m_pNumbers = NULL;
  m_nNumbersCount = 0;
 }

 ~PermutationCalculate()
 {
  if (m_pNumbers)
  {
   delete[] m_pNumbers;
  }
  
  purgeCache();  
 }
public:
 void setNumbers(T* nums, unsigned int numsCount)
 {
  if (m_pNumbers)
  {
   delete[] m_pNumbers;
  }

  m_nNumbersCount = numsCount;
  m_pNumbers = new T[numsCount];
  memcpy(m_pNumbers, nums, sizeof(T) * numsCount);
 }

 const std::vector<T*>& caclulate(unsigned int elmCount)
 {
  purgeCache();

  if (m_nNumbersCount == elmCount)
  {
   T* data = new T[elmCount];
   memcpy(data, m_pNumbers, sizeof(T) * elmCount);
   
   m_vecGroupNumbers.push_back(data);

  }
  else if (m_nNumbersCount > elmCount)
  {
   unsigned int k, l; 
   bool findfirst = false, end = false, swap = false;  

   BYTE *flags = new BYTE[m_nNumbersCount];
   memset(flags, 0, m_nNumbersCount);
   for(unsigned int i=0; i < elmCount; i++) 
    flags[i] = 1; 

   
   T* firstData = new T[elmCount];
   memcpy(firstData, m_pNumbers, sizeof(T) * elmCount);
   m_vecGroupNumbers.push_back(firstData);

   while (!end)
   { 
    findfirst=false;  
    swap=false;

    for(unsigned int i = 0; i < m_nNumbersCount; i++)
    { 
     if(!findfirst && flags[i] != 0 )
     { 
      k=i;
      findfirst=true;
     }

     if( (flags[i] != 0) && (flags[i+1] == 0) )
     {
      flags[i]=0; 
      flags[i+1]=1; 
      swap=true;
      for(l=0; l<i-k; l++) 
       flags[l]=flags[k+l]; 
      for(l=i-k; l<i; l++) 
       flags[l]=0;
      if( (k == i) && (i+1 == m_nNumbersCount - elmCount) )
       end=true; 
     } 
     if(swap)
      break; 
    }

    
    T* data = new T[elmCount];
    unsigned int j = 0;
    for(unsigned int i = 0; i < m_nNumbersCount; i++)
     if (flags[i])
      data[j++] = m_pNumbers[i];
    m_vecGroupNumbers.push_back(data);
   }

   delete[] flags;
  }

  return m_vecGroupNumbers;
 }
private:
 void purgeCache()
 {
  std::vector<T*>::iterator it = m_vecGroupNumbers.begin();
  for (; it != m_vecGroupNumbers.end(); it++)
  {
   if (*it)
   {
    delete[] (*it);
   }
  }
  m_vecGroupNumbers.clear();
 }
private:
 T* m_pNumbers;
 unsigned int m_nNumbersCount;
 std::vector<T*> m_vecGroupNumbers;
};


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
第一章 引论 1.1 组合数学研究的对象 1.2 组合问题典型实例 1.2.1 分派问题 1. 2.2 染色问题 1.2.3 幻方问题 1.2.4 36军官问题 1.2.5 国邮路问题 习 题 第二章 排列与组合 2.1 两个基本计数原理 2.2 无重集的排列与组合 2.3 重集的排列与组合 2.4 排列生成算法 2.4.1 序数法 2.4.2 典序法 2.4.3 轮转法 2.5 组合生成算法 .2.6 应用举例 习 题 第三章 容斥原理 3.1 引 言 3.2 容斥原理 3.3 几个重要公式 3.4 错位排列 3.5 有限制的排列 3.6 棋阵多项式 3.7 禁位排列 习 题 第四章 鸽巢原理 4.1 鸽巢原理 4. 2 鸽巢原理的推广形式 4. 3 ramsey数 4.4 ramsey数的性质 4.5 ramsey定理 习 题 第五章 母函数 5.1 母函数概念 5.2 幂级数型母函数 5.3 整数的拆分 5.4 ferrers图 5.5 指数型母函数 习 题 第六章 递归关系 6.1 引言 6.2 几个典型的递归关系.. 6.3 用母函数方法求解递归关系 6.4 常系数线性齐次递归关系的求解 6.5 常系数线性非齐次递归关系的求解 6.6 非常系数非线性递归关系的求解 6.7 差分表法 6.8 stirling数 习 题 第七章 polya定理 7.1 有限集的映射 7.2 群的基本概念 7.3 置换群 7.4 置换的奇偶性 7.5 置换群下的共轭类 7.6 burnside引理 7.7 polya定理 7.8 polya定理的母函数型式 7.9 不标号图的计数 习 题 第八章 图论基础 8.1 图的基本概念 8.2 同构图、完全图与二分图 8.3 通路、回路与图的连通性 8.4 euler图与hamilton图 8.5 割集与树 8.6 图的矩阵表示法 8.7 平面图、对偶图与色数 8.8 匹配理论 8.9 网络流 习 题 第九章 拉丁方与区组设计 9.1 引言 9.2 拉丁方 9.3 有限域 9.4 正交拉丁方的构造 9.5 完全区组设计 9.6 平衡不完全区组设计(bibd) 9.7 区组设计的构造 9.8 steiner三连系 9.9 hadamard矩阵 习 题 第十章 线性规划 10.1 lp问题引例 10.2 lp问题的一般形式 10.3 lp问题的标准型 10.4 可行域和最优可行解 10.5 单纯形法 10.6 单纯形表格法 10.7 两阶段法 10.8 对偶原理 10.9 对偶单纯形法 10.10 应用举例 习 题 第十一章 组合优化算法与计算的时间复杂度理论 11.1 dijkstra算法 11.2 floyd算法 11.3 kruskal算法 11.4 求最优树的破圈法和统观法 11.5 二分图最大匹配与最佳匹配的算法 11.6 fleury算法 11.7 国邮路问题及其算法 11.8 深度优先搜索法--dfs算法 11.9 项目网络与关键路径法 11.10 网络最大流算法 11.11 状态转移法 11.12 好算法、坏算法和np类问题 11.13 npc类问题 11.14 货郎问题的近似解 习 题... 参考文献

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值