LeetCode OJ - 3Sum、3Sum Closest、4Sum

Given an array S of n integers, are there elements abc in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.

Note:

  • Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
  • The solution set must not contain duplicate triplets.

    For example, given array S = {-1 0 1 2 -1 -4},

    A solution set is:
    (-1, 0, 1)
    (-1, -1, 2)

分析:分治法考虑,对于每一个A[i],将3sum转化为two sum解法,即去掉A[i]后target = 0 - A[i]。实现时需要用到多个hash表,同时去重也不太好解决,需要重新思考一下方案。另外一个方案时参考wiki的算法,也是转化为2sum,不过更为巧妙。

 sort(S);
 for i=0 to n-3 do
    a = S[i];
    k = i+1;
    l = n-1;
    while (k<l) do
       b = S[k];
       c = S[l];
       if (a+b+c == 0) then
          output a, b, c;
          //Following will help printing all 3 combinations that sum to zero.
           k = k + 1
           l = l - 1
       else if (a+b+c > 0) then
          l = l - 1;
       else
          k = k + 1;
       end   
    end
 end

注意要去重,下面的实现就简单了:

class Solution {
public:
    vector<vector<int> > threeSum(vector<int> &num) {
        vector<vector<int> > ret;
        sort(num.begin(), num.end());
        for(int i = 0; i < num.size(); i++) {
            if(i != 0 && num[i] == num[i - 1]) continue;
            int j = i + 1;
            int k = num.size() - 1;
            while(j < k) {
                int sum = num[i] + num[j] + num[k];
                if(sum > 0) {
                    k--;
                }
                else if(sum < 0) {
                    j++;
                }
                else if(sum == 0) {
                    if(j != i + 1 && num[j] == num[j - 1]) {
                        j++;
                    }
                    else if(k != num.size() - 1 && num[k] == num[k+1]) {
                        k--;
                    }
                    else {
                        vector<int> tmp(3);
                        tmp[0] = num[i];
                        tmp[1] = num[j];
                        tmp[2] = num[k];
                        ret.push_back(tmp);
                        j++;
                        k--;
                    } 
                }
            }
        }
        return ret;
    }
};

=====================================================================================

4Sum


Given an array S of n integers, are there elements abc, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.

Note:

  • Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
  • The solution set must not contain duplicate quadruplets.

    For example, given array S = {1 0 -1 0 -2 2}, and target = 0.

    A solution set is:
    (-1,  0, 0, 1)
    (-2, -1, 1, 2)
    (-2,  0, 0, 2)
分析:思路同3sum,时间复杂度O(n^3)


class Solution {
public:
    vector<vector<int> > fourSum(vector<int> &num, int target) {
        vector<vector<int> > ret;
        sort(num.begin(), num.end());
        int len = num.size();
        for(int i = 0; i <= len - 4; i++) {
            if(i != 0 && num[i] == num[i - 1]) continue;
            
            for(int j = i + 1; j <= len - 3; j++) {
                if(j != i + 1 && num[j] == num[j - 1]) continue;
                
                int k = j + 1;
                int l = len - 1;
                while(k < l) {
                    int sum = num[i] + num[j] + num[k] + num[l];
                    if(k != j+1 && num[k] == num[k-1]) {
                        k++;
                    } else if(l != len - 1 && num[l] == num[l+1]) {
                        l--;
                    } else {
                        if(sum > target) {
                            l--;
                        } else if(sum < target) {
                            k++;
                        } else {
                            vector<int> tmp(4);
                            tmp[0] = num[i];
                            tmp[1] = num[j];
                            tmp[2] = num[k];
                            tmp[3] = num[l];
                            ret.push_back(tmp);
                            k++;
                            l--;
                        }
                    }
                }
                
            }
        }
        return ret;
    }
};

=====================================================================================

3Sum Closest

 

Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution.

    For example, given array S = {-1 2 1 -4}, and target = 1.

    The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).

分析:可以采用3Sum相同思路,不过在target判断时会有所不同

class Solution {
public:
    int threeSumClosest(vector<int> &num, int target) {

        int closet;
        bool initCloset = true;
        sort(num.begin(), num.end());
        for(int i = 0; i < num.size(); i++) {
            if(i != 0 && num[i] == num[i - 1]) continue;
            int j = i + 1;
            int k = num.size() - 1;
            while(j < k) {
                int sum = num[i] + num[j] + num[k];
                if(j != i + 1 && num[j] == num[j - 1]) {
                    j++;
                } else if(k != num.size() - 1 && num[k] == num[k+1]) {
                    k--;
                } else {
                    //处理sum,target。 使用closet来记录上次目标值
                    if(initCloset || abs(sum - target) < abs(closet - target)) {
                        closet = sum;
                        initCloset = false;
                    }                   
                    if(sum > target) {
                        k--;
                    } else if(sum < target) {
                        j++;
                    } else if(sum == target) {
                        return sum;
                    } 
                }
            }
        }
        return closet;
    }
};

这里注意closet需要初始化,下面的结构来处理 “初始化” 和 “已初始化” 状态比较好

bool init = true;
int ret;

if(init || xxxx) {
    xxxx
    init = false;
}









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值