Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
分析:BFS,树的每一层都代表可达的字符串。当在某一层找到end时,路径长度一定是最小的。
class Solution {
public:
int ladderLength(string start, string end, unordered_set<string> &dict) {
int ans = 2;
dict.erase(start);
dict.erase(end);
queue<string> que;
que.push(start);
queue<string> next;
while (!que.empty())
{
string s = que.front();
que.pop();
//层次遍历
for(int i = 0; i < s.size(); i++) {
char tmp = s[i];
//测试是否可达end
for(char ch = 'a'; ch <= 'z'; ch++) {
s[i] = ch;
if(s == end) return ans;
if(dict.count(s)) {
dict.erase(s);
next.push(s);
}
}
s[i] = tmp;
}
//进入下一层
if(que.empty()) {
ans++;
swap(que, next);
}
}
return 0;
}
};
当然que和next可以做下优化,不需要交换操作,使用queue<int> que[2]来操作。