LeetCode 042 Trapping Rain Water

题目


Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

For example, 
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.


The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!



思路


1  难点是找到雨水积累的规律。
2 单个点X是否积水,要看左边的最高高度和右边的最高高度是否都比X的高度高;如果都高,那么肯定积水
3 单个点X积多少水?选择左边最高高度和右边最高高度当中最小的一个Y,Y-X即为这点积水。
4 由此可以得到思路。做两个数组来记录某点的左右最高高度即可。

代码


public class Solution {
    public int trap(int[] A) {
        if(A.length<=2){
            return 0;
        }
        int n = A.length;
        int[] left = new int[n];
        int[] right = new int[n];
        int max =0;
        for(int i=1;i<n;i++){
            if(A[i-1]>max){
                max = A[i-1];
            }
            left[i]=max;
        }
        max =0;
        for(int i=n-2;i>=0;i--){
            if(A[i+1]>max){
                max = A[i+1];
            }
            right[i]=max;
        }
        int sum =0;
        for(int i=0;i<n;i++){
            if(A[i]<Math.min(left[i],right[i])){
                sum+=Math.min(left[i],right[i])-A[i];
            }
        }
        return sum;
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值