class Solution {
public:
int massage0(vector<int>& nums) {
if(nums.empty()) return 0;
vector<int> res(nums.size(), 0);
if(nums.size() >= 1) res[0]=nums[0];
if(nums.size() >= 2) res[1]=max(nums[0], nums[1]);
// res[i] = max(res[i-2]+nums[i], res[i-1])
// 当前数字是否选择,选择则前面res[i-2]最优和当前数字是一个组合,不若不选,那么前面res[i-1]是一个组合,比较即可
for(int i =2; i <nums.size(); i++){
res[i] = max(res[i-2] +nums[i], res[i-1]);
}
return res[nums.size()-1];
}
// 优化
int massage1(vector<int>& nums) {
if(nums.empty()) return 0;
int dp0 =0, dp1 =nums[0];
for(int i =1; i <nums.size(); i++){
int temp = max(dp0+nums[i], dp1);
dp0 = dp1;
dp1 = temp;
}
return dp1;
}
// 二维状态变量
// 1、设计状态:
// dp[i][0] 表示在区间[0,i]里接受预约请求,并且下标为i的这一天不接受的最大时长,dp[i][1]则表示接受下标为i的这一天的最大时长
// 2、状态转移方程:
// dp[i][0] = max(dp[i-1][1], dp[i-1][0]);
// dp[i][1] = dp[i-1][0] + nums[i];
// 初始化:
// dp[0][0] = 0, dp[0][1] = nums[0];
int massage(vector<int>& nums) {
if(nums.empty()) return 0;
vector<vector<int>> dp(nums.size()+1, vector<int>(2,0));
dp[0][0] = 0;
dp[0][1] = nums[0];
for(int i =1; i <nums.size(); ++i){
dp[i][0] = max(dp[i-1][1], dp[i-1][0]);
dp[i][1] = dp[i-1][0]+nums[i];
}
return max(dp[nums.size()-1][0], dp[nums.size()-1][1]);
}
};
参考:
https://leetcode-cn.com/problems/the-masseuse-lcci/solution/dong-tai-gui-hua-by-liweiwei1419-8/