一、定义
平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用算法有红黑树、AVL、Treap、伸展树等。
平衡二叉树是在二叉排序树(BST)上引入的,就是为了解决二叉排序树的不平衡性导致时间复杂度大大下降,那么AVL就保持住了(BST)的最好时间复杂度O(logn),所以每次的插入和删除都要确保二叉树的平衡。平衡二叉树见图1所示。
图1(a)平衡二叉树 (b)非平衡二叉树
二、作用
对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度(O(log2n))同时也由此而决定。但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n)。我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉。这同时也会造成树的平衡性受到破坏,降低它的操作的时间复杂度。
平衡二叉搜索树(Balanced Binary Tree)具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。常用算法有红黑树、AVL、Treap、伸展树等。在平衡二叉搜索树中,我们可以看到,其高度一般都良好地维持在O(log2n),大大降低了操作的时间复杂度。
三、动态平衡技术
1.动态平衡技术
Adelson-Velskii 和 Landis 提出了一个动态地保持二叉1.动态平衡技术
Adelson-Velskii 和 Landis 提出了一个动态地保持二叉排序树平衡的方法,其基本思想是:在构造二叉排序树的过程中,每当插入一个结点时,首先检查是否因插入而破坏了树的平衡性,如果是因插入结点而破坏了树的平衡性,则找出其中最小不平衡子树,在保持排序树特性的前提下,调整最小不平衡子树中各结点之间的连接关系,以达到新的平衡。通常将这样得到的平衡二叉排序树简称为 AVL 树。
2.最小不平衡子树
以离插入结点最近、且平衡因子绝对值大于 1 的结点作根结点的子树。为了简化讨论,不妨假设二叉排序树的最小不平衡子树的根结点为 A ,则调整该子树的规律可归纳为下列四种情况:
(1) LL 型:
新结点 X 插在 A 的左孩子的左子树里。调整方法见图 2(a) 。图中以 B 为轴心,将 A 结点从 B 的右上方转到 B 的右下侧,使 A 成为 B 的右孩子。
图2
(2)RR 型:
新结点 X 插在 A 的右孩子的右子树里。调整方法见图 2(b) 。图中以 B 为轴心,将 A 结点从 B 的左上方转到 B 的左下侧,使 A 成为 B 的左孩子。
(3)LR 型:
新结点 X 插在 A 的左孩子的右子树里。调整方法见图 2(c) 。分为两步进行:第一步以 X 为轴心,将 B 从 X 的左上方转到 X 的左下侧,使 B 成为 X 的左孩子, X 成为 A 的左孩子。第二步跟 LL 型一样处理 ( 应以 X 为轴心 ) 。
(4)RL 型:
新结点 X 插在 A 的右孩子的左子树里。调整方法见图 2(d) 。分为两步进行:第一步以 X 为轴心,将 B 从 X 的右上方转到 X 的右下侧,使 B 成为 X 的右孩子, X 成为 A 的右孩子。第二步跟 RR 型一样处理 ( 应以 X 为轴心 ) 。
实际的插入情况,可能比图2要复杂。因为 A 、 B 结点可能还会有子树。现举一例说明,设一组记录的关键字按以下次序进行插入: 4 、 5 、 7 , 2 、 1 、 3 、 6 ,其生成及调整成二叉平衡树的过程示于图 3。
在图 3 中,当插入关键字为 3 的结点后,由于离结点 3 最近的平衡因子为 2 的祖先是根结点 5 。所以,第一次旋转应以结点 4 为轴心,把结点 2 从结点 4 的左上方转到左下侧,从而结点 5 的左孩子是结点 4 ,结点 4 的左孩子是结点 2 ,原结点 4 的左孩子变成了结点 2 的右孩子。第二步再以结点 4 为轴心,按 LL 类型进行转换。这种插入与调整平衡的方法可以编成算法和程序,这里就不再讨论了。
图3 平衡二叉树的建立
3.代码实现
utl.h
- #ifndef UTL_H_
- #define UTL_H_
- /*
- *整理了一些常用的功能,如内存管理
- */
- #include <stdio.h>
- #include <stdlib.h>
- /*申请内存*/
- inline void *xalloc(int size)
- {
- void *p;
- p = (void *)malloc(size);
- /*申请失败*/
- if(p == NULL)
- {
- printf("alloc error\n");
- exit(1);
- }
- return p;
- }
- /*内存释放*/
- #define xfree(p) free(p)
- #endif
avl.h
- #ifndef AVL_H__
- #define AVL_H__
- /*
- *avl树数据结构及相关操作
- */
- #include <stdio.h>
- #include <stdlib.h>
- struct AVLTree
- {
- unsigned int nData; /*存储数据*/
- struct AVLTree* pLeft; /*指向左子树*/
- struct AVLTree* pRight; /*指向右子树*/
- int nHeight; /*树的平衡度*/
- };
- /*插入操作*/
- struct AVLTree* insert_tree(unsigned int nData, struct AVLTree* pNode);
- /*查找操作,找到返回1,否则,返回0*/
- int find_tree(unsigned int data, struct AVLTree* pRoot);
- /*删除操作,删除所有节点*/
- void delete_tree(struct AVLTree** ppRoot);
- /*打印操作*/
- void print_tree(struct AVLTree* pRoot);
- #endif
- #include "avl.h"
- #include "utl.h"
- static int Max(int a, int b);
- static int Height(struct AVLTree* pNode);
- /*旋转操作*/
- static struct AVLTree* SingleRotateWithLeft(struct AVLTree* pNode);
- static struct AVLTree* SingleRotateWithRight(struct AVLTree* pNode);
- static struct AVLTree* DoubleRotateWithLeft(struct AVLTree* pNode);
- static struct AVLTree* DoubleRotateWithRight(struct AVLTree* pNode);
- struct AVLTree* insert_tree(unsigned int nData, struct AVLTree* pNode)
- {
- if (NULL == pNode)
- {
- pNode = (struct AVLTree*)xalloc(sizeof(struct AVLTree));
- pNode->nData = nData;
- pNode->nHeight = 0;
- pNode->pLeft = pNode->pRight = NULL;
- }
- else if (nData < pNode->nData) /*插入到左子树中*/
- {
- pNode->pLeft = insert_tree(nData, pNode->pLeft);
- if (Height(pNode->pLeft) - Height(pNode->pRight) == 2) /*AVL树不平衡*/
- {
- if (nData < pNode->pLeft->nData)
- {
- /*插入到了左子树左边, 做单旋转*/
- pNode = SingleRotateWithLeft(pNode);
- }
- else
- {
- /*插入到了左子树右边, 做双旋转*/
- pNode = DoubleRotateWithLeft(pNode);
- }
- }
- }
- else if (nData > pNode->nData) /*插入到右子树中*/
- {
- pNode->pRight = insert_tree(nData, pNode->pRight);
- if (Height(pNode->pRight) - Height(pNode->pLeft) == 2) /*AVL树不平衡*/
- {
- if (nData > pNode->pRight->nData)
- {
- /*插入到了右子树右边, 做单旋转*/
- pNode = SingleRotateWithRight(pNode);
- }
- else
- {
- /*插入到了右子树左边, 做双旋转*/
- pNode = DoubleRotateWithRight(pNode);
- }
- }
- }
- pNode->nHeight = Max(Height(pNode->pLeft), Height(pNode->pRight)) + 1;
- return pNode;
- }
- /*删除树*/
- void delete_tree(struct AVLTree** ppRoot)
- {
- if (NULL == ppRoot || NULL == *ppRoot)
- return;
- delete_tree(&((*ppRoot)->pLeft));
- delete_tree(&((*ppRoot)->pRight));
- xfree(*ppRoot);
- *ppRoot = NULL;
- }
- /*中序遍历打印树的所有结点, 因为左结点 < 父结点 < 右结点, 因此打印出来数据的大小是递增的*/
- void print_tree(struct AVLTree* pRoot)
- {
- if (NULL == pRoot)
- return;
- static int n = 0;
- print_tree(pRoot->pLeft);
- printf("[%d]nData = %u\n", ++n, pRoot->nData);
- print_tree(pRoot->pRight);
- }
- /*
- *查找操作,找到返回1,否则,返回0
- *data是待查找的数据
- *pRoot:avl树的指针
- */
- int find_tree(unsigned int data, struct AVLTree* pRoot)
- {
- static int k=1; /*查找次数*/
- if (NULL == pRoot)
- {
- printf("not find %d times\n", k);
- return 0;
- }
- if(data == pRoot->nData)
- {
- printf("find:%d times\n", k);
- return 1;
- }
- else if(data < pRoot->nData)
- {
- ++k;
- return find_tree(data, pRoot->pLeft);
- }
- else if(data > pRoot->nData)
- {
- ++k;
- return find_tree(data, pRoot->pRight);
- }
- }
- static int Max(int a, int b)
- {
- return (a > b ? a : b);
- }
- /*返回节点的平衡度*/
- static int Height(struct AVLTree* pNode)
- {
- if (NULL == pNode)
- return -1;
- return pNode->nHeight;
- }
- /********************************************************************
- pNode pNode->pLeft
- / \
- pNode->pLeft ==> pNode
- \ /
- pNode->pLeft->pRight pNode->pLeft->pRight
- *********************************************************************/
- static struct AVLTree* SingleRotateWithLeft(struct AVLTree* pNode)
- {
- struct AVLTree* pNode1;
- pNode1 = pNode->pLeft;
- pNode->pLeft = pNode1->pRight;
- pNode1->pRight = pNode;
- /*结点的位置变了, 要更新结点的高度值*/
- pNode->nHeight = Max(Height(pNode->pLeft), Height(pNode->pRight)) + 1;
- pNode1->nHeight = Max(Height(pNode1->pLeft), pNode->nHeight) + 1;
- return pNode1;
- }
- /********************************************************************
- pNode pNode->pRight
- \ /
- pNode->pRight ==> pNode
- / \
- pNode->pRight->pLeft pNode->pRight->pLeft
- *********************************************************************/
- static struct AVLTree* SingleRotateWithRight(struct AVLTree* pNode)
- {
- struct AVLTree* pNode1;
- pNode1 = pNode->pRight;
- pNode->pRight = pNode1->pLeft;
- pNode1->pLeft = pNode;
- /*结点的位置变了, 要更新结点的高度值*/
- pNode->nHeight = Max(Height(pNode->pLeft), Height(pNode->pRight)) + 1;
- pNode1->nHeight = Max(Height(pNode1->pRight), pNode->nHeight) + 1;
- return pNode1;
- }
- static struct AVLTree* DoubleRotateWithLeft(struct AVLTree* pNode)
- {
- pNode->pLeft = SingleRotateWithRight(pNode->pLeft);
- return SingleRotateWithLeft(pNode);
- }
- static struct AVLTree* DoubleRotateWithRight(struct AVLTree* pNode)
- {
- pNode->pRight = SingleRotateWithLeft(pNode->pRight);
- return SingleRotateWithRight(pNode);
- }
测试函数
- #include <stdio.h>
- #include <time.h>
- #include "avl.h"
- int main()
- {
- int i,j;
- AVLTree* pRoot = NULL;
- srand((unsigned int)time(NULL));
- for (i = 0; i < 10; ++i)
- {
- j = rand();
- printf("%d\n", j);
- pRoot = Insert(j, pRoot);
- }
- PrintTree(pRoot);
- DeleteTree(&pRoot);
- return 0;
- }
四、参考文献
1、http://sjjg.js.zwu.edu.cn/SFXX/chazhao/chazhao7.3.2.2.html
2、baike.baidu.com/view/593144.htm
3、http://caoruntao.iteye.com/blog/1013550