平衡二叉树

 

[置顶] 数据结构: 平衡二叉树

分类: C Program Algorithms Data structs   31939人阅读  评论(0)  收藏  举报

目录(?)[+]

一、定义

        平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用算法有红黑树、AVL、Treap、伸展树等。

     平衡二叉树是在二叉排序树(BST)上引入的,就是为了解决二叉排序树的不平衡性导致时间复杂度大大下降,那么AVL就保持住了(BST)的最好时间复杂度O(logn),所以每次的插入和删除都要确保二叉树的平衡。平衡二叉树见图1所示。

图1(a)平衡二叉树                      (b)非平衡二叉树

二、作用

        对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度(O(log2n))同时也由此而决定。但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n)。我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉。这同时也会造成树的平衡性受到破坏,降低它的操作的时间复杂度。
    平衡二叉搜索树(Balanced Binary Tree)具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。常用算法有红黑树、AVL、Treap、伸展树等。在平衡二叉搜索树中,我们可以看到,其高度一般都良好地维持在O(log2n),大大降低了操作的时间复杂度。

三、动态平衡技术

1.动态平衡技术

        Adelson-Velskii 和 Landis 提出了一个动态地保持二叉1.动态平衡技术
        Adelson-Velskii 和 Landis 提出了一个动态地保持二叉排序树平衡的方法,其基本思想是:在构造二叉排序树的过程中,每当插入一个结点时,首先检查是否因插入而破坏了树的平衡性,如果是因插入结点而破坏了树的平衡性,则找出其中最小不平衡子树,在保持排序树特性的前提下,调整最小不平衡子树中各结点之间的连接关系,以达到新的平衡。通常将这样得到的平衡二叉排序树简称为 AVL 树。

2.最小不平衡子树

        以离插入结点最近、且平衡因子绝对值大于 1 的结点作根结点的子树。为了简化讨论,不妨假设二叉排序树的最小不平衡子树的根结点为 A ,则调整该子树的规律可归纳为下列四种情况:

(1) LL 型:
  新结点 X 插在 A 的左孩子的左子树里。调整方法见图 2(a) 。图中以 B 为轴心,将 A 结点从 B 的右上方转到 B 的右下侧,使 A 成为 B 的右孩子。

图2

(2)RR 型:
  新结点 X 插在 A 的右孩子的右子树里。调整方法见图 2(b) 。图中以 B 为轴心,将 A 结点从 B 的左上方转到 B 的左下侧,使 A 成为 B 的左孩子。
(3)LR 型:
  新结点 X 插在 A 的左孩子的右子树里。调整方法见图 2(c) 。分为两步进行:第一步以 X 为轴心,将 B 从 X 的左上方转到 X 的左下侧,使 B 成为 X 的左孩子, X 成为 A 的左孩子。第二步跟 LL 型一样处理 ( 应以 X 为轴心 ) 。
(4)RL 型:
  新结点 X 插在 A 的右孩子的左子树里。调整方法见图 2(d) 。分为两步进行:第一步以 X 为轴心,将 B 从 X 的右上方转到 X 的右下侧,使 B 成为 X 的右孩子, X 成为 A 的右孩子。第二步跟 RR 型一样处理 ( 应以 X 为轴心 ) 。


        实际的插入情况,可能比图2要复杂。因为 A 、 B 结点可能还会有子树。现举一例说明,设一组记录的关键字按以下次序进行插入: 4 、 5 、 7 , 2 、 1 、 3 、 6 ,其生成及调整成二叉平衡树的过程示于图 3。
  在图 3 中,当插入关键字为 3 的结点后,由于离结点 3 最近的平衡因子为 2 的祖先是根结点 5 。所以,第一次旋转应以结点 4 为轴心,把结点 2 从结点 4 的左上方转到左下侧,从而结点 5 的左孩子是结点 4 ,结点 4 的左孩子是结点 2 ,原结点 4 的左孩子变成了结点 2 的右孩子。第二步再以结点 4 为轴心,按 LL 类型进行转换。这种插入与调整平衡的方法可以编成算法和程序,这里就不再讨论了。

图3 平衡二叉树的建立

3.代码实现

utl.h

  1. #ifndef UTL_H_  
  2. #define UTL_H_  
  3. /* 
  4.  *整理了一些常用的功能,如内存管理 
  5.  */  
  6. #include <stdio.h>  
  7. #include <stdlib.h>  
  8.   
  9. /*申请内存*/  
  10. inline void *xalloc(int size)  
  11. {  
  12.     void *p;  
  13.     p = (void *)malloc(size);  
  14.     /*申请失败*/  
  15.     if(p == NULL)  
  16.     {  
  17.         printf("alloc error\n");  
  18.         exit(1);  
  19.     }  
  20.     return p;  
  21. }  
  22. /*内存释放*/  
  23. #define xfree(p) free(p)  
  24.   
  25. #endif  

avl.h

  1. #ifndef AVL_H__  
  2. #define AVL_H__  
  3. /* 
  4.  *avl树数据结构及相关操作 
  5.  */  
  6. #include <stdio.h>  
  7. #include <stdlib.h>  
  8.   
  9. struct AVLTree  
  10. {  
  11.     unsigned int nData;    /*存储数据*/  
  12.     struct AVLTree* pLeft;    /*指向左子树*/  
  13.     struct AVLTree* pRight;    /*指向右子树*/  
  14.     int nHeight;    /*树的平衡度*/  
  15. };  
  16.   
  17. /*插入操作*/  
  18. struct AVLTree* insert_tree(unsigned int nData, struct AVLTree* pNode);  
  19.   
  20. /*查找操作,找到返回1,否则,返回0*/  
  21. int find_tree(unsigned int data, struct AVLTree* pRoot);  
  22.   
  23. /*删除操作,删除所有节点*/  
  24. void delete_tree(struct AVLTree** ppRoot);  
  25.   
  26. /*打印操作*/  
  27. void print_tree(struct AVLTree* pRoot);  
  28.   
  29. #endif  
avl.c

  1. #include "avl.h"  
  2.   
  3. #include "utl.h"  
  4.   
  5. static int Max(int a, int b);  
  6. static int Height(struct AVLTree* pNode);  
  7.   
  8. /*旋转操作*/  
  9. static struct AVLTree* SingleRotateWithLeft(struct AVLTree* pNode);  
  10. static struct AVLTree* SingleRotateWithRight(struct AVLTree* pNode);  
  11. static struct AVLTree* DoubleRotateWithLeft(struct AVLTree* pNode);  
  12. static struct AVLTree* DoubleRotateWithRight(struct AVLTree* pNode);  
  13.   
  14. struct AVLTree* insert_tree(unsigned int nData, struct AVLTree* pNode)  
  15. {  
  16.     if (NULL == pNode)  
  17.     {  
  18.         pNode = (struct AVLTree*)xalloc(sizeof(struct AVLTree));  
  19.         pNode->nData = nData;  
  20.         pNode->nHeight = 0;  
  21.         pNode->pLeft = pNode->pRight = NULL;  
  22.     }  
  23.     else if (nData < pNode->nData)    /*插入到左子树中*/  
  24.     {  
  25.         pNode->pLeft = insert_tree(nData, pNode->pLeft);  
  26.         if (Height(pNode->pLeft) - Height(pNode->pRight) == 2)    /*AVL树不平衡*/  
  27.         {  
  28.             if (nData < pNode->pLeft->nData)  
  29.             {  
  30.                 /*插入到了左子树左边, 做单旋转*/  
  31.                 pNode = SingleRotateWithLeft(pNode);  
  32.             }  
  33.             else  
  34.             {  
  35.                 /*插入到了左子树右边, 做双旋转*/  
  36.                 pNode = DoubleRotateWithLeft(pNode);  
  37.             }  
  38.         }  
  39.     }  
  40.     else if (nData > pNode->nData)    /*插入到右子树中*/  
  41.     {  
  42.         pNode->pRight = insert_tree(nData, pNode->pRight);  
  43.         if (Height(pNode->pRight) - Height(pNode->pLeft) == 2)    /*AVL树不平衡*/  
  44.         {  
  45.             if (nData > pNode->pRight->nData)  
  46.             {  
  47.                 /*插入到了右子树右边, 做单旋转*/  
  48.                 pNode = SingleRotateWithRight(pNode);  
  49.             }  
  50.             else  
  51.             {  
  52.                 /*插入到了右子树左边, 做双旋转*/  
  53.                 pNode = DoubleRotateWithRight(pNode);  
  54.             }  
  55.         }  
  56.     }  
  57.   
  58.     pNode->nHeight = Max(Height(pNode->pLeft), Height(pNode->pRight)) + 1;  
  59.   
  60.     return pNode;  
  61. }  
  62.   
  63.   
  64. /*删除树*/  
  65. void delete_tree(struct AVLTree** ppRoot)  
  66. {  
  67.     if (NULL == ppRoot || NULL == *ppRoot)  
  68.         return;  
  69.   
  70.     delete_tree(&((*ppRoot)->pLeft));  
  71.     delete_tree(&((*ppRoot)->pRight));  
  72.     xfree(*ppRoot);  
  73.     *ppRoot = NULL;  
  74. }  
  75.   
  76. /*中序遍历打印树的所有结点, 因为左结点 < 父结点 < 右结点, 因此打印出来数据的大小是递增的*/  
  77. void print_tree(struct AVLTree* pRoot)  
  78. {  
  79.     if (NULL == pRoot)  
  80.         return;  
  81.   
  82.     static int n = 0;  
  83.   
  84.   
  85.     print_tree(pRoot->pLeft);  
  86.     printf("[%d]nData = %u\n", ++n, pRoot->nData);  
  87.     print_tree(pRoot->pRight);  
  88. }  
  89.   
  90. /* 
  91.  *查找操作,找到返回1,否则,返回0 
  92.  *data是待查找的数据 
  93.  *pRoot:avl树的指针 
  94.  */  
  95. int find_tree(unsigned int data, struct AVLTree* pRoot)  
  96. {  
  97.     static int k=1;    /*查找次数*/  
  98.     if (NULL == pRoot)  
  99.     {  
  100.         printf("not find %d times\n", k);  
  101.         return 0;  
  102.     }  
  103.   
  104.     if(data == pRoot->nData)  
  105.     {  
  106.         printf("find:%d times\n", k);  
  107.         return 1;  
  108.     }  
  109.     else if(data < pRoot->nData)  
  110.     {  
  111.         ++k;  
  112.         return find_tree(data, pRoot->pLeft);  
  113.     }  
  114.     else if(data > pRoot->nData)  
  115.     {  
  116.         ++k;  
  117.         return find_tree(data, pRoot->pRight);  
  118.     }  
  119. }  
  120.   
  121. static int Max(int a, int b)  
  122. {  
  123.     return (a > b ? a : b);  
  124. }  
  125.   
  126. /*返回节点的平衡度*/  
  127. static int Height(struct AVLTree* pNode)  
  128. {  
  129.     if (NULL == pNode)  
  130.         return -1;  
  131.   
  132.     return pNode->nHeight;  
  133. }  
  134.   
  135. /******************************************************************** 
  136.       pNode pNode->pLeft 
  137.       / \ 
  138.   pNode->pLeft ==> pNode 
  139.       \     / 
  140.   pNode->pLeft->pRight pNode->pLeft->pRight 
  141.  *********************************************************************/  
  142. static struct AVLTree* SingleRotateWithLeft(struct AVLTree* pNode)  
  143. {  
  144.     struct AVLTree* pNode1;  
  145.   
  146.     pNode1 = pNode->pLeft;  
  147.     pNode->pLeft = pNode1->pRight;  
  148.     pNode1->pRight = pNode;  
  149.   
  150.     /*结点的位置变了, 要更新结点的高度值*/  
  151.     pNode->nHeight = Max(Height(pNode->pLeft), Height(pNode->pRight)) + 1;  
  152.     pNode1->nHeight = Max(Height(pNode1->pLeft), pNode->nHeight) + 1;  
  153.   
  154.     return pNode1;  
  155. }  
  156.   
  157. /******************************************************************** 
  158.   pNode pNode->pRight 
  159.   \ / 
  160.   pNode->pRight ==> pNode 
  161.   / \ 
  162.   pNode->pRight->pLeft pNode->pRight->pLeft 
  163.  *********************************************************************/  
  164. static struct AVLTree* SingleRotateWithRight(struct AVLTree* pNode)  
  165. {  
  166.     struct AVLTree* pNode1;  
  167.   
  168.     pNode1 = pNode->pRight;  
  169.     pNode->pRight = pNode1->pLeft;  
  170.     pNode1->pLeft = pNode;  
  171.   
  172.     /*结点的位置变了, 要更新结点的高度值*/  
  173.     pNode->nHeight = Max(Height(pNode->pLeft), Height(pNode->pRight)) + 1;  
  174.     pNode1->nHeight = Max(Height(pNode1->pRight), pNode->nHeight) + 1;  
  175.   
  176.     return pNode1;  
  177. }  
  178.   
  179. static struct AVLTree* DoubleRotateWithLeft(struct AVLTree* pNode)  
  180. {  
  181.     pNode->pLeft = SingleRotateWithRight(pNode->pLeft);  
  182.   
  183.     return SingleRotateWithLeft(pNode);  
  184. }  
  185.   
  186. static struct AVLTree* DoubleRotateWithRight(struct AVLTree* pNode)  
  187. {  
  188.     pNode->pRight = SingleRotateWithLeft(pNode->pRight);  
  189.   
  190.     return SingleRotateWithRight(pNode);  
  191. }  

测试函数

  1. #include <stdio.h>  
  2.   
  3. #include <time.h>  
  4.   
  5. #include "avl.h"  
  6.   
  7. int main()  
  8. {  
  9.     int i,j;  
  10.     AVLTree* pRoot = NULL;  
  11.   
  12.     srand((unsigned int)time(NULL));  
  13.       
  14.     for (i = 0; i < 10; ++i)  
  15.     {  
  16.             j = rand();  
  17.             printf("%d\n", j);  
  18.         pRoot = Insert(j, pRoot);  
  19.     }  
  20.   
  21.     PrintTree(pRoot);  
  22.   
  23.     DeleteTree(&pRoot);  
  24.   
  25.     return 0;  
  26. }  

四、参考文献

1、http://sjjg.js.zwu.edu.cn/SFXX/chazhao/chazhao7.3.2.2.html

2、baike.baidu.com/view/593144.htm

3、http://caoruntao.iteye.com/blog/1013550

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值