多任务弹性网络

本文介绍了一种针对多任务回归问题的算法——MultiTaskElasticNet。该算法使用了混合的ℓ1ℓ2和ℓ2正则化项,并通过坐标下降法进行参数优化。此外,还介绍了如何利用MultiTaskElasticNetCV通过交叉验证来自动调整超参数。
摘要由CSDN通过智能技术生成

MultiTaskElasticNet 是一个对多回归问题估算稀疏参数的弹性网络: Y Y 是一个二维数组,形状是(nsamples,ntasks)。 其限制条件是和其他回归问题一样,是选择的特征,也称为 tasks 。
从数学上来说, 它包含一个混合的 12 ℓ 1 ℓ 2 先验和 2 ℓ 2 先验为正则项训练的线性模型 目标函数就是最小化:

minW12nsamples||XWY||2Fro+αρ||W||21+α(1ρ)2||W||2Fro m i n W 1 2 n s a m p l e s | | X W − Y | | F r o 2 + α ρ | | W | | 2 1 + α ( 1 − ρ ) 2 | | W | | F r o 2

MultiTaskElasticNet类中的实现采用了坐标下降法求解参数。

MultiTaskElasticNetCV中可以通过

交叉验证来设置参数alpha ( α α )和l1_ratio( ρ) ρ )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值