1. 减法公式

2. P(B|A)

3. P(AUB) = P(A) + P(B) - P(AB)
对任意事件A, B, C, 有
P(AUBUC) = P(A) + P(B) + P(C) - P(AB) - P(BC)-P(AC)+P(ABC)
要注意: P(AB), P(AUB) 是不同的, P(AB)是P(AnB)的简写。
~~~~~~
看例题:
例1 设A, B, C是三个事件, 且P(A) = P(B) = P(C) = 0.25, P(AB) = P(BC) = 0, P(AC)=0.125, 则A, B, C至少有一个发生的概率为______________.
解: 我们已知P(AUBUC)的公式, 现在要先求出 P(ABC),
由于P(ABC) ≤ P(AB) =0, 所以 P(AUBUC) = 0.25 + 0.25+0.25 -0-0-0.125 +0 = 0.625
例2 设 A, B,C是三个随机事件, 且P(A) = P(B) =P(C)=0.25, P(AB)=P(BC)=0, P(AC)= 0.125,
求A, B, C 至少有一个发生的概率。
解:三个随机事件, 有一个公式 P(A+B+C) = P(A) +P(B) +P(C)-P(AB)-P(AC)-P(BC) +P(ABC).
依题意,A, B, C至少有一个发生,就是说或者的意思,即A+B+C
另, ABC ⊂ AB, 所以P(ABC) ≤ P(AB)=0, 又已知P(ABC) ≥ 0,
得出P(ABC)=0, 这就是由事件关系推理出概率关系, 但绝不能反过来推理。
依据前述公式有P(A+B+C) = 0.25+0.25+0.25 -0 -0 - 0.125 +0 = 0. 625