高数_向量代数_单位向量_向量与坐标轴的夹角

本文介绍了单位向量的概念及其重要性,并详细解释了如何通过单位向量的坐标来确定向量与坐标轴之间的夹角关系。此外,还提供了一些例题帮助读者更好地理解这一数学概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一 单位向量

如果向量 α的模为1,  即|α| =1,  则称α为单位向量。 

如果α≠ 0, 记 a4d69879dcea4617bd0dbd6a3e9d9e27.png, α ⁰称之为 α的单位化向量,它的长度为1,  并且有  α = |α| α ⁰

 

二  向量与坐标轴的夹角

单位向量的三个坐标是向量的方向角余弦。

先看一个定理性质的例题

86c334873e304122acea84bf5b321b16.jpeg

接着看一个应用的例题

57d5844cb8c746ca9aa88f2f8c88c551.png

 再看一个题目

设向量的方向余弦分别满足: (1) cosa = 0;  (2) cosβ = 1;  (3) cosa = 0, cosβ = 0. 问这些向量与坐标轴的关系如何?

解: 

fe4fa3584e684103ad51f32163b64f9a.jpeg

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值