高数_第1章空间解析几何与向量代数_向量的数量积

一 数量积的定义:

  给定两个向量 α 和 β, 定义它们的数量积为 

   α·β = |α|· |β| cosφ ,   其中 φ 是 此两个向量的夹角。

两个向量的数量积是数量。

定理2  向量垂直与数量积的关系    

向量 α 与 β 相互垂直的充分必要条件是 α·β=0.     规定零向理与任何向量垂直。

 

二 数量积的坐标表示

因为向量i, j, k都是单位向量,且相互垂直, 容易得出 i·i = 1,  j·j = 1, k·k=1.

设向量α = {a₁ , a₂ , a₃},   β ={b₁, b₂ , b₃},

α  · β = a₁b₁ + a₂b₂ + a₃ b₃.    这就是数量积的坐标表示。

由定理2可知, α 与 β相互垂直的充分必要条件是 a₁b₁ + a₂b₂ + a₃ b₃ = 0.

 

通过数量积的坐标表示, 可以推出两个向量夹角的余弦的坐标表示。设α 与 β之间的夹角为φ,由数量积的定义和坐标表示各得出

74967a6f8c2c4895a2db7dbe8e6b23dc.png

 

三 例题

d533216bd2604c029dabf51cd36c6822.png

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值