一 二重积分的性质
积分中值定理
设函数f(x, y) 在有界闭区域D上连续, 则在D上至少存在一点 ( ξ, η), 使得
注: 这里|D| 表示积分区域D的面积。
当f(x, y) ≡ 1时,
此定理的几何意义是:在区域D上以曲面z = f(x, y)为顶的曲顶柱体的体积, 等于D上以某一点(ξ, η) 的函数值f (ξ, η)为高的平顶柱体的体积。
设函数f(x, y) 在有界闭区域D上连续, 则在D上至少存在一点 ( ξ, η), 使得
注: 这里|D| 表示积分区域D的面积。
当f(x, y) ≡ 1时,
此定理的几何意义是:在区域D上以曲面z = f(x, y)为顶的曲顶柱体的体积, 等于D上以某一点(ξ, η) 的函数值f (ξ, η)为高的平顶柱体的体积。