离散数学__第2章命题逻辑的推理理论__真题讲解_(涉及对称差㊉)

本文解析了2019年10月真题中等值演算法的应用,包括命题(P↔Q)∨¬R的合取范式求解,并介绍了2021年4月的有效推理中CP规则的证明方法。涉及的知识点包括逻辑联结词、公式转换和演绎推理技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2019年10月真题

27. 用等值演算法求命题(P↔Q) ∨ ¬R主合取范式, 并指出公式的类型。

分析:  要解答这个题目, 前提必须熟记

 A ↔B ⇔ (¬A∨B) ∧( A∨¬B)

 A↔B ⇔ (A∧B) ∨ (¬A∧¬B)

解: 

07da9e9a7bd5477eb4224e2e0395e23c.jpeg

~~~~~~~~~~~~~~~~~~

这里提及一个重要公式, A ㊉ B = (A-B)∪ (B-A)

也可以转化为      A ㊉ B = (A∪B)— (A∩B)

 

2021年4月 真题

24题 用 CP规则证明下面有效推理。

前提:  P → (Q→R),  S→P, Q

结论:  S → R

证:  

16cf72a6969f4995b22b84011cf1f603.jpeg

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值