概论_第7章_参数估计_点估计之极大似然估计__性质

一 性质

极大似然估计 有一个简单有用的性质:

如果 θ ^ \hat\theta θ^ θ \theta θ的极大似然估计, 则对任一 θ \theta θ的函数 g ( θ ) g(\theta) g(θ), 其极大似然估计为 g ( θ ^ ) g(\hat\theta) g(θ^) .

该性质称为极大似然估计的不变性,它使得一些复杂结构的参数的极大似然估计的获得变得容易了。

二 一些重要结论

  1. 对均匀分布的总体U(0, θ \theta θ), θ \theta θ的极大似然估计为 θ ^ = m a x \hat \theta=max θ^=max{ x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn}

  2. 对指数分布的总体E( λ \lambda λ), λ \lambda λ的极大似然估计为 λ ^ \hat\lambda λ^ = 1 / x ‾ 1/ {\overline x } 1/x , 另外 λ \lambda λ的矩估计也为 1 / x ‾ 1/ {\overline x} 1/x,

  3. 对正态总体N( μ , σ 2 \mu, \sigma^2 μ,σ2), 未知参数 θ = ( μ , σ 2 ) \theta=(\mu, \sigma^2) θ=(μ,σ2), μ \mu μ的极大似然估计为 μ ^ = x ‾ \hat\mu= \overline x μ^=x, σ \sigma σ的极大似然估计为 σ ^ 2 = 1 n ∑ i = 1 n ( x i − x ‾ ) 2 = s n 2 \hat\sigma^2 = \frac{1}{n}\sum\limits_{i=1}^n(x_i-\overline x)^2 = s_n^2 σ^2=n1i=1n(xix)2=sn2.

  4. 对泊松分布P( λ \lambda λ), λ \lambda λ的最大似然估计为 λ ^ \hat \lambda λ^ = x ‾ \overline x x, 另外 λ \lambda λ的矩估计也为 x ‾ \overline x x.

形成表格,如下表所示:
在这里插入图片描述

此表必须牢牢记住, 必须掌握!!!

三 看例题

例1 设 x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn是来自正态总体N ( μ , σ 2 \mu, \sigma^2 μ,σ2), 求标准差 σ \sigma σ 和 概率 P(X ⩾ 3 \geqslant3 3)的极大似然估计。

解 由上述表格可知 与 极大似然估计的不变性, σ \sigma σ 的极大似然估计为 σ ^ \hat \sigma σ^ = ( 1 n ∑ i = 1 n ( x i − x ‾ ) 2 ) 1 2 (\frac{1}{n} \sum\limits_{i=1}^n(x_i-\overline x)^2)^\frac{1}{2} (n1i=1n(xix)2)21 , 概率 P(X ⩽ 3 \leqslant 3 3) 的极大似然估计为

P( X ^ ≤ 3 \hat X\leq 3 X^3)= Φ ( 3 − μ σ ) = Φ ( 3 − x ‾ σ ^ ) = Φ ( 3 − x ‾ 1 n ∑ ( x i − x ‾ ) 2 ) \Phi(\frac{3-\mu}{\sigma}) = \Phi(\frac{3-\overline x}{\hat \sigma}) = \Phi(\frac{3-\overline x}{\sqrt{\frac{1}{n}\sum(x_i-\overline x)^2}}) Φ(σ3μ)=Φ(σ^3x)=Φ(n1(xix)2 3x)

例2 2022.10真题

设某元件的使用寿命X ( 单位: 小时) 的概率密度为
f ( x ) = f(x) = f(x)= { 1 θ e − x θ , x > 0 0 , x ⩽ 0 \begin{cases}\frac{1}{\theta}e^{-\frac{x}{\theta}} &, x > 0\\ 0 & ,x \leqslant 0\end{cases} {θ1eθx0x>0x0 , θ > 0 \theta>0 θ>0,
X 1 _1 1, X 2 _2 2, … , X n _n n 为来自总体 X 的样本。 求: θ \theta θ 的极大似然估计 θ ^ \hat\theta θ^.

解:当 x 1 , x 2 , . . . , x n x_1, x_2,..., x_n x1,x2,...,xn 都大于0时, 似然函数

L( θ \theta θ) = ∏ i = 1 n f ( x i ) = ∏ i = 1 n ( 1 θ e − x i θ ) = 1 θ n e − 1 θ ∑ i = 1 n x i \prod\limits_{i=1}^nf(x_i) = \prod\limits_{i=1}^n{{\left( {{{\frac{1}{\theta}e^{-\frac{x_i}{\theta}}}}} \right)}} =\frac{1}{\theta^n}e^{-\frac{1}{\theta} \sum\limits_{i=1}^nx_i } i=1nf(xi)=i=1n(θ1eθxi)=θn1eθ1i=1nxi,

两边取对数, lnL( θ \theta θ) = -nln θ \theta θ- 1 θ ∑ i = 1 n x i \frac{1}{\theta}\sum\limits_{i=1}^nx_i θ1i=1nxi ,

求导,并且令等式=0, 有 d l n L ( θ ) d θ = − n θ + 1 θ 2 ∑ i = 1 n x i = 0 \frac{dlnL(\theta)}{d\theta} = -\frac{n}{\theta} +\frac{1}{\theta^2}\sum\limits_{i=1}^nx _i = 0 dθdlnL(θ)=θn+θ21i=1nxi=0,

θ ^ = ∑ i = 1 n x i n = x ‾ . \hat\theta = \frac{\sum\limits_{i=1}^nx_i}{n} = \overline x. θ^=ni=1nxi=x.

这个例题值得仔细分析, 仔细体会。

现在总结求极大似然估计 的步骤
第1步,列出L ( θ ) (\theta) (θ) 等式, 此式在中途 包含了 ∏ \prod 符号,

第2步 , 将 L( θ \theta θ) 两边取对数,要利用对数性质 l n ( x y ) = l n x + l n y ln(xy)=lnx+lny ln(xy)=lnx+lny,

第3步, 两边求导, 并令等式=0,

第4步, 解出 θ \theta θ, 记住此时 θ \theta θ加上 ^ 。

这四步必须牢牢记住, 必须掌握!!!

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值