数学基础补充归纳大纲(持续更新...)

本文深入探讨了统计学在机器学习中的应用,包括先验概率、后验概率与贝叶斯定理的区别与联系,协方差与相关性的概念及其在数据标准化中的作用,以及似然函数、最大似然估计、最小二乘法、梯度下降等关键概念的解释。此外,还介绍了拉格朗日乘数法在约束优化问题中的应用,并讨论了统计判决的不同准则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 先验概率、后验概率、贝叶斯的区别和联系?

这篇讲得比较好 https://blog.csdn.net/yewei11/article/details/50537648

2. 协方差和相关性有什么区别?

相关性是协方差的标准化格式。协方差本身很难做比较。例如:如果我们计算工资($)和年龄(岁)的协方差,因为这两个变量有不同的度量,所以我们会得到不能做比较的不同的协方差。
在这里插入图片描述
为了解决这个问题,我们计算相关性来得到一个介于-1和1之间的值,就可以忽略它们各自不同的度量。
在这里插入图片描述

3.似然函数、最大似然估计、最小二乘、梯度下降
  • 似然函数
    我们假设f是一个概率密度函数,那么在这里插入图片描述是一个条件概率密度函数(θ 是固定的)
    而反过来,在这里插入图片描述叫做似然函数 (x是固定的)。一般把似然函数写成在这里插入图片描述
    θ是因变量。
  • 最大似然估计
    而最大似然估计 就是求在θ的定义域中,当似然函数取得最大值时θ的大小。
    最大似然估计,就是利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。
  • 最小二乘法
    最小二乘法我理解的是未知事件,求如何使得该事件最可能发生
  • 最小二乘和极大似然是构造目标函数的方法,梯度下降是优化算法。
    优化方法中,有一类是使用函数的梯度信息,包括一阶的方法,例如梯度下降,以及二阶的方法,例如牛顿法等。当然,还有和梯度无关的方法,例如 fixed point iteration,坐标下降等等。
    机器学习的核心是一个model,一个loss fuction,再加上一个优化的算法。一个目标函数可以用不同的优化算法,不同的目标函数也可以用相同的优化算法。所以最小二乘和极大似然根本不是算法,和梯度下降毫无可比性。
    最小二乘和极大似然也不是对立的。
    最小二乘是从函数形式上来看的,极大似然是从概率意义上来看的。事实上,最小二乘可以由高斯噪声假设+极大似然估计推导出来。当然极大似然估计还可以推导出其他的loss function,比如logistic回归中,loss function是交叉熵.
    最小二乘法和梯度下降法的异同:
    http://blog.csdn.net/u010922227/article/details/77748493

参考:王芊 https://www.zhihu.com/question/24900876/answer/29375743

4.拉格朗日乘数法

拉格朗日乘子法主要用于解决约束优化问题,它的基本思想就是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的无约束优化问题。拉格朗日乘子背后的数学意义是其为约束方程梯度线性组合中每个向量的系数。
基本形态:在这里插入图片描述
上述讨论的问题均为等式约束优化问题,但等式约束并不足以描述人们面临的问题——>不等式约束优化问题
KKT条件
参考:http://blog.csdn.net/pipisorry/article/details/52135854

5. 统计判决
  • 最小误判概率准则判决
  • 最小损失准则判决
  • 最小最大损失准则
  • N-P(Neyman-Pearson)判决
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值