【Tensorflow】实现简单的神经网络模型

本文介绍了如何在TensorFlow中实现简单的神经网络模型,强调了inference、loss和training三个关键步骤。讨论了激活函数如sigmoid的重要性,以及无激活函数的神经网络等同于线性回归的局限性。同时提到了RMSProp优化算法,并简单提及了双向RNN和CNN的实现,指出理解模型的目标、参数shape和评估指标对于构建有效模型至关重要。
摘要由CSDN通过智能技术生成

在上一节我们简单说了一下简单的模型,有线性回归,Logistic模型以及KNN。

这次我们来说一下tensorflow的神经网络模型

无论是构建线性回归这种简单模型还是神经网络,步骤都是差不多的,inference,loss,training这大概的三个步骤。

下面这个例子仅仅是使用了激活函数,没有用到具体的神经网络

import tensorflow as tf
# 第一层的特征数
n_hidden1=256
# 第二层的特征数
n_hidden2=256
# 输入维度
n_input=784
# 输入占位符
x=tf.placeholder('float32',[None,n_input])
# 编码
def encoder(x):
    # 参数 tf,random_normal生成正太分布,第一个参数是shape
    weight1=tf.Variable(tf.random_normal([n_input,n_hidden1]))
    biases1=tf.Variable(tf.random_normal([n_hidden1]))
    weight2=tf.Variable(tf.random_normal([n_hidden1,n_hidden2]))
    biases2=tf.Variable(tf.random_normal([n_hidden2]))
    # 第一层,sigmoid是激活函数,神经元的非线性作用函数。输出范围是[0-1],可以作为概率
    layer_1=tf.nn.sigmoid(tf.add(tf.matmul(x,weight1),biases1))
    # 第二层
    layer_2=tf.nn.sigmoid(tf.add(tf.matmul(x,weight2),biases2))
    return layer_2
# 解码
def decoder(x):
    # 参数
    weight1=tf.Variable(tf.random_normal([n_hidden2,n_hidden1]))
    biases1=tf.Variable(tf.random_normal([n_hidden1]))
    weight2=tf.Variable(tf.random_normal([n_hidden1,n_input]))
    biases2=tf.Variable(tf.random_normal([n_input]))
    #同理
    layer_1=tf.nn.sigmoid(tf.add(tf.matmul(x,weight1),biases1))
    layer_2=tf.nn.sigmoid(tf.add(tf.matmul(x,weight2),biases2))
    return layer_2
# 编码
encoder_op=encoder(x)
# 解码
decoder_op=decoder(encoder_op)
# 编码后解码的数据
y_pred=decoder_op
# 真实的数据
y_true=x
# 拟合模型时的参数
learning_rate=0.01
batch_size=50
training_epochs=1000
# 损失值
cost=tf.reduce_mean(tf.pow(y_true-y_pred,2))
# 优化器,RMSProp优化算法优化
optimizer=tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
init=tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值