题目
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
啥都不说先贴代码
int numWays(int n) {
long long f[110]={0};
for(int i=0;i<=n;i++)
{
if(i==0||i==1)
f[i]=1;
else if(i==2)
f[i]=2;
else
f[i]=(f[i-1]+f[i-2])%1000000007;
//一般题目都说要模顺手就得模,不模数太大int解决不了,可能就得开longlong了
}
return f[n]%1000000007;
}
思考过程
emm一开始看着这个题目简单的描述以为是智力题,没动笔光想了,过了两分钟诶,拿起笔写了起来
f(0)=1,f(1)=1,f(2)=2,f(3)=3,f(4)=5,f(5)=8…
这不就是斐波那契数列的变式?
于是没有什么是一个for解决不了的,不要用递归!不要用递归!
当然如果记得斐波那契数列有一个通项公式更好,可以修改一下成为这道题的通项公式,更快了。(btw我不记得,我不会推只知道有那么个东西)
记得要模一下,上面的数列最好开成long long开成int万一爆了可能都一时间自己反应不过来哪里有问题