2022牛客多校#6 C. Forest

题目大意

给定 n ( 1 ≤ n ≤ 16 ) n(1 \leq n \leq 16) n(1n16) 个点 m ( 0 ≤ m ≤ 100 ) m(0 \leq m \leq 100) m(0m100) 条正边权的无向简单图,求每个生成子图的最小生成森林的权值和,答案对 998244353 998244353 998244353 取模。

定义点集 V V V ,边集 E E E 的图 G G G 的最小生成森林为:

  • 最小生成森林的边集 S ⊆ E S \subseteq E SE
  • 任意两个节点的连通性不变
  • S S S 为满足以上条件的最小权值。

G G G 的生成子图为具有点集 V V V 和边集为 E E E 的子集所构成的图。

题解

类似题目 P6789

单独考虑按边权值从小到大枚举每条边的贡献,边权值第 i i i 小的边为 e i = ( u i , v i , w i ) e_i=(u_i,v_i,w_i) ei=(ui,vi,wi)
由于求所有方案的总权值和,因此边权值相同的边任意排序后不影响结果。

定理:

  • 一条边在生成子图的最小生成森林中,当且仅当该子图中其他权值更小的点不能使得两端联通。

对于边 e i = ( u i , v i , w i ) e_i=(u_i,v_i,w_i) ei=(ui,vi,wi) ,求有多少生成子图的最小生成森林包含该边。

边编号在 [ i + 1 , m ] [i+1,m] [i+1,m] 范围内的边,不影响 e i e_i ei 的选取,方案数为 2 m − 1 − i 2^{m-1-i} 2m1i

考虑边编号在 [ 1 , i − 1 ] [1,i-1] [1i1] 范围内的边。
设边编号在 [ 1 , i − 1 ] [1,i-1] [1,i1] 范围内,且端点均在点集 S S S 内的边数为 C n t i − 1 ( S ) Cnt_{i-1}(S) Cnti1(S) ,有转移式
C n t i ( S ) = [ u i ∈ S & v i ∈ S ] + C n t i − 1 ( S ) Cnt_{i}(S)=[u_i\in S\&v_i \in S]+Cnt_{i-1}(S) Cnti(S)=[uiS&viS]+Cnti1(S)

设边编号在 [ 1 , i − 1 ] [1,i-1] [1,i1] 范围的边构成连通块 S S S ,则

  1. 两端在 S S S 外的边,可以任意选取。方案数为 2 C n t i − 1 ( V − S ) 2^{Cnt_{i-1}(V-S)} 2Cnti1(VS)
  2. 只有一段在 S S S 内的边,均不能选取,否则连通块就不是 S S S 了。方案数为 1 1 1
  3. 两端都在 S S S 内的边,有一部分需要被选取使得构成连通块 S S S 。设方案数为 f i − 1 ( S ) f_{i-1}(S) fi1(S)

考虑计算 f i − 1 ( S ) f_{i-1}(S) fi1(S) ,等于总方案数-至少有两个连通块的方案数。
可以直接计算,枚举 S S S 中包含编号最小的节点的连通块 T T T ,则剩余部分为 S − T S-T ST ,有
f i − 1 ( S ) = 2 C n t i − 1 ( S ) − ∑ T ⊂ S , l o w b i t ( S ) = l o w b i t ( T ) f i − 1 ( T ) ⋅ 2 C n t i − 1 ( S − T ) f_{i-1}(S)=2^{Cnt_{i-1}(S)}-\sum_{T \subset S,lowbit(S)=lowbit(T)}{f_{i-1}(T)\cdot 2^{Cnt_{i-1}(S-T)}} fi1(S)=2Cnti1(S)TS,lowbit(S)=lowbit(T)fi1(T)2Cnti1(ST)

上式的复杂度为 O ( 3 n ) O(3^n) O(3n) ,搭配枚举 m m m ,复杂度为 O ( 3 n m ) O(3^n m) O(3nm) ,约 4e9 ,勉强可以计算出结果。

e i e_i ei 的贡献为
W i = w i × ( 2 m − 1 − 2 m − i − 1 × ∑ S ⊆ V , u i ∈ S , v i ∈ S 2 C n t i − 1 ( V − S ) f i − 1 ( S ) ) W_i=w_i\times(2^{m-1}-2^{m-i-1} \times \sum_{S\subseteq V,u_i \in S,v_i \in S}{2^{Cnt_{i-1}(V-S)}f_{i-1}(S)}) Wi=wi×(2m12mi1×SV,uiS,viS2Cnti1(VS)fi1(S))

也可以考虑加入 e i e_i ei 边,从 f i − 1 ( S ) f_{i-1}(S) fi1(S) 递推到 f i ( S ) f_{i}(S) fi(S) ,有
f i ( S ) = { 2 f i − 1 ( S ) + ∑ T ⊂ S , u i ∉ T , v i ∉ T f i − 1 ( S − T − v i ) ⋅ f i − 1 ( T + u i ) u i ∈ S , v i ∈ S f i − 1 ( S ) o t h e r s f_i(S)=\begin{cases} 2f_{i-1}(S)+\sum_{T\subset S,u_i \notin T, v_i \notin T}f_{i-1}(S-T-{v_i})\cdot f_{i-1}(T+{u_i}) & u_i \in S,v_i \in S\\ f_{i-1}(S) & others \end{cases} fi(S)={2fi1(S)+TS,ui/T,vi/Tfi1(STvi)fi1(T+ui)fi1(S)uiS,viSothers

总复杂度 O ( m ⋅ 3 n − 2 ) O(m\cdot 3^{n-2}) O(m3n2) ,约4e8。

参考代码

来自杭电6队

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=20;
const int mod=998244353;
struct node{
	int u,v,s;
};
vector<node>w;
bool operator<(const node&x,const node&y){
	return x.s<y.s;
}
int n;
int a[N][N],f[1<<N],g[1<<N],fac[1000],sum[1<<N];
int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
int dec(int x,int y){return x-y<0?x-y+mod:x-y;}
int mul(int x,int y){return (ll)x*y%mod;}
int main(){
	scanf("%d",&n);
	for (int i=1;i<=n;i++){
		for (int j=1;j<=n;j++) scanf("%d",&a[i][j]);
	}
	for (int i=1;i<=n;i++) 
		for (int j=i+1;j<=n;j++)if (a[i][j]){
			node t; t.u=i; t.v=j; t.s=a[i][j];
			w.push_back(t);
		}
	sort(w.begin(),w.end());
	for (int i=1;i<=n;i++) f[1<<(i-1)]=1;
	fac[0]=1;
	for (int i=1;i<=500;i++) fac[i]=mul(fac[i-1],2);
	int m=(1<<n)-1,ans=0;
	for (int i=0;i<w.size();i++){
		int u=w[i].u,v=w[i].v; u--;v--;
		int t=(1<<n)-1;
		t^=(1<<u);
		t^=(1<<v);
		int s=fac[i];
		for (int j=0;j<(1<<n);j++) if ((j&(1<<u))&&(j&(1<<v))) s=dec(s,mul(f[j],fac[sum[m^j]]));
		ans=add(ans,mul(mul(s,w[i].s),fac[(int)w.size()-i-1]));
		for (int j=t;~j;j=(j?((j-1)&t):-1))
			for (int k=j;~k;k=(k?((k-1)&j):-1)) {
			g[j|(1<<u)|(1<<v)]=add(g[j|(1<<u)|(1<<v)],mul(f[(j^k)|(1<<u)],f[k|(1<<v)]));
			}
		for (int j=0;j<=m;j++){
		if ((j&(1<<u))&&(j&(1<<v))) f[j]=mul(f[j],2);
		f[j]=add(f[j],g[j]); g[j]=0;
		}
		for (int j=0;j<(1<<n)-1;j++) if ((j&(1<<u))&&(j&(1<<v))) sum[j]++; 
	}
	printf("%d\n",ans);
}
  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值