分类是数位DP,但自己数位DP想不出来。参照一位大佬的代码,然后慢慢看懂自己加注释。。。。
大佬的传送门:http://blog.csdn.net/fsss_7/article/details/52085170
#include<bits/stdc++.h>
using namespace std;
const long long mod=1e9+7;
int digit[25];
long long pow10[25];//pow10[x]=pow(10,x)%mod
//285 = 1*1 + 2*2 + 3*3 + 4*4 + 5*5 + 6*6 + 7*7 + 8*8 + 9*9
//2025 = 1*1 + 1*2 + 1*3 + …… + 9*8 + 9*9
long long suan(long long x,int a,int b,bool limit)
{
long long ret=0;
int i,j,len=a+b-1;//长度为a+b-1
if(!limit)//若长度小于最大长度
{
if(a==1)
return pow10[a+b-3]*2025%mod;//若a为1,则最高位是b位
else
return pow10[a+b-4]*9*2025%mod;//若a不为1,则最高位不是b位,即最高位的范围为1~9
}
else//若长度等于最大长度,逐位计算a、b位的乘积累加
{
for(i=len;i>b;i--)
ret=(ret+(digit[i]-(i==len))*2025*pow10[i-3]%mod)%mod;
for(i=1;i<digit[b];i++)
ret=(ret+pow10[b-2]*i*45%mod)%mod;
for(i=b-1;i>a;i--)
ret=(ret+digit[i]*pow10[i-2]*digit[b]*45%mod)%mod;
for(i=1;i<digit[a];i++)
ret=(ret+pow10[a-1]*digit[b]*i%mod)%mod;
ret=(ret+(x%pow10[a-1]+1)*digit[a]*digit[b]%mod)%mod;
}
return ret;
}
long long get(long long x)
{
if(x==0)
return 0;
int i,j,len=0;
long long tmp=x,ret=0;
while(tmp)
{
len++;
digit[len]=tmp%10;
tmp/=10;
}
for(i=1;2*i-1<=len;i++)//计算奇数位数时,中间位的累积
{
if(2*i-1<len)
{
if(i==1)
ret=(ret+285)%mod; //一位数时,f(x)的和为285
else
ret=(ret+pow10[2*i-3]*9*285%mod)%mod; //奇数位数(>1)时,中间数的累积
}
else
{
for(j=len;j>i;j--)//高位变化时,中间位的累积
ret=(ret+(digit[j]-(j==len))*285*pow10[j-2]%mod)%mod;
for(j=1;j<digit[i];j++)//高位最大时,中间的位在1~digit[i]-1范围内的累积
ret=(ret+pow10[i-1]*j*j%mod)%mod;
ret=(ret+digit[i]*digit[i]*(x%pow10[i-1]+1)%mod)%mod;//高位最大时,中间位等于digit[i]时的累积
}
}
for(i=1;i<=len;i++)//计算成对累积
for(j=i+1;i+j-1<=len;j++)
ret=(ret+2*suan(x,i,j,i+j-1==len))%mod;//计算i位与j位的在卷积和上的累积
return ret;
}
int main()
{
long long l,r,i;
pow10[0]=1;
for(i=1;i<=20;i++)
pow10[i]=pow10[i-1]*10%mod;
while(scanf("%lld%lld",&l,&r)!=EOF)
{
printf("%lld\n",(get(r)-get(l-1)+mod)%mod);
}
}