hdu 2242 考研路茫茫——空调教室 点强连通+树形dp

146 篇文章 0 订阅
59 篇文章 0 订阅

首先用强连通缩点,之后再用图中的桥和强连通分量新建一张图,之后算一次树形dp。
树形dp过程是,将一棵无根树,当成有根树,利用dfs计算每个节点的子树中的权值(即每一个强连通分量中的人数)

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
struct Edge
{
    int from,to,tag;
};

int n,m,dfn[200000+5],low[200000+5],vis[200000+5],dep,num,p[200000+5];
int ans,sum,pe[20000+5],bcc_sum[20000+5],dp[20000+5];
vector<Edge>edges;
vector<int>G[200000+5];
vector<int>g[200000+5];

void AddEdge(int from,int to)
{
    int i,flag=0;
    for(i=0; i<G[from].size(); i++)
        if(edges[G[from][i]].to==to)
        {
            edges[G[from][i]].tag++;
            flag=1;
            break;
        }
    if(!flag)
    {
        Edge tp;
        tp.from=from;
        tp.to=to;
        tp.tag=0;
        edges.push_back(tp);
        G[from].push_back(edges.size()-1);
    }
}

void dfs(int u,int fa)
{
    dfn[u]=low[u]=++dep;
    for(int i=0; i<G[u].size(); i++)
    {
        Edge t=edges[G[u][i]];
        if(!vis[t.to])
        {
            vis[t.to]=1;
            dfs(t.to,u);
            low[u]=min(low[u],low[t.to]);
            if(low[t.to]>dfn[u]&&!t.tag)
            {
                g[u].push_back(t.to);
                g[t.to].push_back(u);
                num++;
            }
        }
        else if(t.to!=fa||t.tag)
            low[u]=min(low[u],dfn[t.to]);
    }
}

void dfs2(int u,int bcc)
{
    p[u]=bcc;
    dp[bcc]+=pe[u];
    for(int i=0; i<G[u].size(); i++)
    {
        int to=edges[G[u][i]].to;
        bool f=true;
        for(int j=0; j<g[u].size(); j++)
        {
            int v=g[u][j];
            if(v==to)
            {
                f=false;
                break;
            }
        }
        if(!f||vis[to]) continue;
        vis[to]=1;
        dfs2(to,bcc);
    }
}

void dfs3(int u)
{
    vis[u]=1;
    for(int i=0; i<G[u].size(); i++)
    {
        int v=G[u][i];
        if(vis[v]==-1)
        {
            dfs3(v);
            dp[u]+=dp[v];
        }
    }
    ans=min(ans,abs(sum-2*dp[u]));
    //printf("%d %d\n",ans,abs(sum-2*dp[u]));
}

void find_bcc()
{
    int i,j,bcc,u,v;
    memset(vis,0,sizeof(vis));
    num=dep=0;
    for(i=0; i<n; i++)
    {
        if(!vis[i])
        {
            vis[i]=1;
            dfs(i,-1);
        }
    }
    memset(vis,0,sizeof(vis));
    memset(p,0xff,sizeof(p));
    memset(dp,0,sizeof(dp));
    bcc=0;
    for(i=0; i<n; i++)
    {
        if(!vis[i])
        {
            vis[i]=1;
            dfs2(i,bcc);
            bcc++;
        }
    }
    if(bcc==1)
    {
        printf("impossible\n");
    }
    else {
    for(i=0; i<=n; i++)
        G[i].clear();

    for(i=0; i<n; i++)
        for(j=0; j<g[i].size(); j++)
        {
            int v=g[i][j];
            if(p[v]!=p[i])
            {
                G[p[i]].push_back(p[v]);
            }
        }
    memset(vis,0xff,sizeof(vis));
    ans=0x7fffffff;
    dfs3(0);
    if(ans==sum) printf("impossible\n");
    else printf("%d\n",ans);
    }
}

int main()
{
    int _,i,u,v;
    while(~scanf("%d%d",&n,&m))
    {
        if(n==0&&m==0) break;
        edges.clear();
        sum=0;
        for(i=0; i<n; i++)
        {
            scanf("%d",&pe[i]);
            sum+=pe[i];
        }
        for(i=0; i<=n; i++)
        {
            G[i].clear();
            g[i].clear();
        }
        for(i=1; i<=m; i++)
        {
            scanf("%d%d",&u,&v);
            AddEdge(u,v);
            AddEdge(v,u);
        }
        find_bcc();
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值