一、说明
- 本章节介绍利用RAGFlow配置本地部署的DeepSeek
- 老样子, 无废话, 直接开干
- 基于《第三节:RAGFlow基于本地部署的DeepSeek模型简单配置》进行操作
二、开始配置文档库
- 老样子,登录系统进入主界面

- 知识库文档准备
- 根据上一章节, 将基本的deepseek 70b已经配置好
- 此处准备做一个公安系统犯罪嫌疑人记录知识库, 提前准备三份犯罪嫌疑人档案, 目录和文件结构如下
❯ ll -a
-rw-r--r--@ 1 xincan staff 10K 3 14 14:26 犯罪嫌疑人-1.xlsx
-rw-r--r--@ 1 xincan staff 10K 3 13 17:26 犯罪嫌疑人-2.xlsx
-rw-r--r--@ 1 xincan staff 10K 3 13 21:05 犯罪嫌疑人-3.xlsx

- 知识库构建

- 这里知识库名称是创建时携带过来的
- 也可以给知识库上传图片
- 添加描述
- 权限分配
- 文档解析器默认DeepDoc
- 嵌入模型选BAAI/bge-large-en-v1.5

- 切片方法选择General
- 分段标识符不变
- 其它都不改变, 先默认


- 点击保存跳转到数据集

- 上传上述准备好的文档
- 勾选创建时解析文档, 此步骤是利用本身自带的BAA/bge-large-en-v1.5模型进行解析, 存入到向量数据库, 我在安装ragflow时, 安装的是权量完整版的, 自带内嵌解析模型

- 点击确定, 等待解析完成

- 解析成功
- 此处如果上个步骤没有勾选创建时解析, 点击刷新按钮进行解析, 确保解析状态为成功, 同时开启启用

三、聊天配置
- 点击聊天, 新建助理
- 助理名称:犯罪信息
- 助理描述: 犯罪助理
- 助理头像: 你喜欢的头像
- 知识库选择刚才创建的: 犯罪嫌疑知识库
- 其它保持不变

- 保存确定, 点击加号, 新增聊天信息
- 聊天内容: 请问犯罪嫌疑人信息: 姓名、身份证、年龄三个方面, 表格展示
- 此时开始思考, 并从知识库中开始分析
- 最终根据我的描述将犯罪嫌疑人的基础信息以表格的形式展现, 并给出引用
- 同时, 文档中没有给出犯罪嫌疑人的年龄, 此时年龄是基于2023年计算的, 这个有问题, 后续解决
- 基本上算是完成了我想要的本地知识库检索的这么个东西
