deeplearning
溪风205
用不停息
展开
-
yolov1
yolo算法详解1 算法[论文]:/home/cuiyunpeng/Documents/infer/ai/papers/作者: joseph算法概述yolo是一种对象检测算法, 它使用回归方法从整幅图像来预测bounding box和类别概率。是一种端到端的神经网络算法。算法原理(1) 将图像分割成S×SS \times S S×S的网格。如果一个对象的中心落在网格的中心,那么网格中心就对应一个检测的物体对象;(2) 每一个网络预测B个bounding box N个类别概率,每一原创 2021-06-11 18:20:47 · 197 阅读 · 0 评论 -
“Failed to get convolution algorithm. This is probably because cuDNN failed to initialize”错误的解决办法
1. 问题Failed to get convolution algorithm. This is probably because cuDNN failed to initialize2 . 原因GPU内存不足造成的3 解决方案对GPU进行按需分配。from tensorflow.compat.v1 import ConfigProtofrom tensorflow.compat.v1 import InteractiveSessionconfig = ConfigProto()co原创 2021-02-18 15:29:56 · 105 阅读 · 0 评论 -
maskrcnn n the checkpoint. Original error:
1 问题tensorflow.python.framework.errors_impl.InvalidArgumentError: Restoring from c InvalidArgumentError (see above for traceback): Restoring from checkpoint failed. This is most likely due to a mismatch between the current graph and the graph from the原创 2021-01-25 14:16:40 · 174 阅读 · 0 评论 -
非极大值抑制(NMS,Non-Maximum Suppression)的原理与代码详解
1、NMS的原理NMS(Non-Maximum Suppression)算法本质是搜索局部极大值,抑制非极大值元素。NMS就是需要根据score矩阵和region的坐标信息,从中找到置信度比较高的bounding box。NMS是大部分深度学习目标检测网络所需要的,大致算法流程为:1.对所有预测框的置信度降序排序2.选出置信度最高的预测框,确认其为正确预测,并计算他与其他预测框的IOU3.根据2中计算的IOU去除重叠度高的,IOU>threshold就删除4.剩下的预测框返回第1步,直到没有原创 2020-12-17 11:51:17 · 473 阅读 · 0 评论 -
caffe:遇到的问题
1 问题CXX src/caffe/layers/window_data_layer.cppsrc/caffe/layers/window_data_layer.cpp: In member function ‘virtual void caffe::WindowDataLayer<Dtype>::load_batch(caffe::Batch<Dtype>*)’:src/caffe/layers/window_data_layer.cpp:293:42: error: ‘CV原创 2020-05-10 14:28:18 · 692 阅读 · 0 评论 -
paper web address
paper:https://papers.readthedocs.io/en/latest/原创 2020-04-12 09:15:37 · 323 阅读 · 0 评论 -
YOLOV2算法详述
1.1 基本介绍yolov2论文发表在CVPR2017,在yolov1基础上作出了大量的改动,使得识别的种类、精度、速度、和定位准确性等得到了大幅的提升。论文标题:《YOLO9000: Better, Faster, Stronger》论文地址: https://arxiv.org/pdf/1612.08242v1.pdf1.2 改进之处1.2.1 Batch Normalizatio...原创 2020-04-04 17:54:54 · 709 阅读 · 0 评论 -
yolov3.cfg参数详解
1.1 层说明[xxx]开始的行表示网络的一层,其后的内容为该层的参数配置[convolutional]为卷积层[yolo]为yolov3的配置参数其中[net]为特殊的层,配置整个网络1.2 各层参数说明[net] batch=64 表示网络积累多少个样本后进行一次BPsubdivisions=16...原创 2020-04-01 11:14:59 · 1845 阅读 · 2 评论 -
机器学习:激活函数归类
Rectified Linear Unit(ReLU) 用于隐层神经元输出Sigmoid用于隐层神经元输出Softmax 用于多分类神经网络输出Linear 用于回归神经网络输出(或二分类问题)原创 2020-04-01 15:39:43 · 190 阅读 · 0 评论 -
iou 概述
1、什么是IoU(Intersection over Union)IoU是一种测量在特定数据集中检测相应物体准确度的一个标准。IoU是一个简单的测量标准,只要是在输出中得出一个预测范围(bounding boxex)的任务都可以用IoU来进行测量。为了可以使IoU用于测量任意大小形状的物体检测,ground-truth bounding boxes(人为在训练集图像中标出要检测物体的大概范围)...原创 2020-04-01 13:56:04 · 2279 阅读 · 0 评论