Kanade's convolution,HDU - 6057,FWT

Kanade’s convolution,HDU - 6057

https://vjudge.net/problem/HDU-6057/origin
Give you two arrays A[0…2m−1] and B[0…2m−1].

Please calculate array C[0…2m−1]:

C[k]=∑i and j=kA[i xor j]∗B[i or j]

You just need to print ∑2m−1i=0C[i]∗1526i mod 998244353

m<=19

0≤A[i],B[i]<998244353
思路: 令x = i ^ j,y = i | j

i0011
j0101
x0110
y0111
i&j0001

见上表可知i & j = y-x
故原式
在这里插入图片描述
可以改写为 C [ k ] = ∑ y − x = k A [ x ] ∗ B [ y ] C[k] = \sum_{y-x=k} A[x] *B[y] C[k]=yx=kA[x]B[y]
但实际上由枚举i,j变为枚举x,y时多了一些限制,见上表可以发现当(i,j) = (0,1)或(1,0)时(x,y)都等于(1,1),即当x的某一位为1时,实际上有两组(i,j)可以得到,设x中1的位数为bit(x),同样(x,y)中没有(1,0)的情况,即x & y = x,且y - x = x^y
故实际上是求
C [ k ] = ∑ x ⨁ y = k [ x & y = = x ] ∗ A [ x ] ∗ B [ y ] ∗ 2 b i t ( x ) C[k] = \sum_{x \bigoplus y = k}[x \& y == x]*A[x]*B[y] *2^{bit(x)} C[k]=xy=k[x&y==x]A[x]B[y]2bit(x)
由上表可知[x & y == x]这一限制条件实际上与bit(y) - bit(x) = bit(k)等价,故改为求 C [ k ] = ∑ x ⨁ y = k [ b i t ( y ) − b i t ( x ) = = b i t ( k ) ] ∗ A [ x ] ∗ B [ y ] ∗ 2 b i t ( x ) C[k] = \sum_{x \bigoplus y = k}[bit(y) - bit(x) == bit(k)]*A[x]*B[y] *2^{bit(x)} C[k]=xy=k[bit(y)bit(x)==bit(k)]A[x]B[y]2bit(x)
可以通过枚举bit(y),bit(x),算出对应的值再累加起来即可

#include<bits/stdc++.h>
#define ll long long
#define MOD 998244353
#define T 1526
using namespace std;
inline int qpow(int a,int b,int mod)
{
    int ans =1;
    while(b)
    {
        if(b & 1) ans = 1ll * ans * a % mod;
        a = 1ll * a * a % mod;
        b >>= 1;
    }
    return ans;
}
int len,inv2;
void FWT_xor(int *A,int on)//非模意义下不取模即可,但要注意开long long(即使最终结果在int范围内)
{
    for(int i=1;i<len;i<<=1) for(int p=i<<1,j=0;j<len;j+=p)
            for(int k=0;k<i;++k)
            {
                int x=A[j+k],y=A[i+j+k];
                A[j+k]=(x+y)%MOD,A[i+j+k]=(x+MOD-y)%MOD;
                if(on==-1) A[j+k]=1ll*A[j+k]*inv2%MOD,A[i+j+k]=1ll*A[i+j+k]*inv2%MOD;//这里是在mol意义下的,否则把inv2改为/2
            }
}
const int MAXN = (1<<19)+5;
int a[MAXN],b[MAXN],ta[20][MAXN],tb[20][MAXN],bit[MAXN],ans[MAXN],tmp[20][MAXN];
int m;
int main()
{
    inv2 = qpow(2,MOD-2,MOD);
    for(int i = 0;i < MAXN-5;++i)
    {
        int cnt = 0;
        for(int j = 0;j < 19;++j)
            if(i & (1<<j))
                ++cnt;
        bit[i] = cnt;
    }
    while(~scanf("%d",&m))
    {
        memset(ans,0,sizeof(int) * (1<<m));
        for(int i = 0;i <= m;++i)
            memset(tmp[i],0,sizeof(int) * (1<<m));
        len = (1<<m);
        for(int i = 0;i < len;++i)
            scanf("%d",&a[i]);
        for(int i = 0;i < len;++i)
            scanf("%d",&b[i]);
        for(int j = 0;j <= m;++j)
        {
            for(int i = 0;i < len;++i)
            {
                if(bit[i] == j)
                    ta[j][i] = 1ll*a[i]*(1<<j)%MOD;
                else
                    ta[j][i] = 0;
                if(bit[i] == j)
                    tb[j][i] = b[i];
                else
                    tb[j][i] = 0;
            }
            FWT_xor(ta[j],1),FWT_xor(tb[j],1);
        }
        for(int x = 0;x <= m;++x)
            for(int y = x;y <= m;++y)
            {
                for(int i = 0;i < len;++i)
                    tmp[y-x][i] = (tmp[y-x][i]+1ll * ta[x][i] * tb[y][i]%MOD)%MOD;
            }
        for(int i = 0;i <= m;++i)
            FWT_xor(tmp[i],-1);
        ll res = 0;
        ll tt = 1;
        for(int i = 0;i < len;++i)
            res = (res + 1ll * tmp[bit[i]][i] *tt%MOD)%MOD,tt = tt * T % MOD;
        printf("%lld\n",res);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值