- 博客(4)
- 收藏
- 关注
原创 使用pandas处理时间序列数据
有时候数据中的时间格式并不符合时间序列的标准格式,pandas 提供了 to_datetime 方法,可以方便地将字符串转换为时间格式。可以通过 pandas 的 date_range 生成时间索引,也可以直接从已有数据转换为时间序列格式。重采样是指将时间序列数据从一个频率转换为另一个频率的过程,通常伴随着某种聚合操作。时间序列数据通常需要按不同的时间频率(例如天、周、月)进行重采样或聚合。pandas 可以轻松处理不同格式的时间数据,并进行转换操作。例如,将月数据转换为日数据,需要填充新增加的日期。
2024-09-30 18:12:54
685
原创 Pandas教程,比较全面细致
具体来说,Pandas 是基于 NumPy 的,用于处理结构化数据,比如表格和时间序列数据,特别适合大规模的数据处理和清洗任务。具体来说,Pandas 是基于 NumPy 的,用于处理结构化数据,比如表格和时间序列数据,特别适合大规模的数据处理和清洗任务。## 2、数据结构Pandas 主要引入了两种新的数据结构:DataFrame 和 Series。DataFrame:类似于 Excel 或数据库中的表格,它是一个二维的、带有行和列标签的数据结构。每列可以包含不同类型的数据。
2024-09-30 00:01:49
1022
原创 Try-Expect 和 raise函数的一些讲解
try 用于包含可能会引发异常的代码expect 处理try块中出现的异常finally 无论是否发生异常,finally中的代码都会被执行raise 是 python 中主动引发异常的关键字。在程序的某些特定情况下,手动抛出异常,让程序进入异常处理流程。raise引发内置异常raise引发自定义异常重新抛出异常有时,在 except 块中可能想捕获一个异常并做一些处理,但之后仍然希望将该异常重新抛出,让调用者处理。这可以通过 raise 来实现。用raise可以在print出错误
2024-09-28 00:05:50
503
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人