算法时间复杂度分析

 简单而言,算法时间复杂度就是数学里面的函数,也就是算法的时间度量,一般记作:T(n)=O( f(n) )

算法分析的分类:

  1.最坏情况:任意输入规模的最大运行时间。(上界)

  2.平均情况:任意输入规模的期望运行时间。

  3.最好情况:任意输入规模的最小运行时间,通常最好情况不会出现。(下界)

  情景一:(常数阶)

int sum=0,n=2;
sum+=n;
printf("sum=%d",sum);

算法的执行次数f(n)=3,一般用常数1取代加法常数,因此算法的时间复杂度为O(1).

  情景二:(线性阶)

void test1(int n)
{
	for(int i=0;i<n;i++)
	{
		//...
	}
}

算法的执行次数f(n)=n,因此算法的时间复杂度为O(n).

 情景三:(平方阶)

void test2(int n)
{
	int m=5;
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<n;j++)
		{
			//...
		}
	}
	for(int k=0;k<2 * n;k++)
	{
		//...
	}
	while(m--)
	{
		//...
	}
}

算法的执行次数为f(n)=n^2+2n+5,一般关注算法的最坏运行情况,关注n^2,算法的时间复杂度为O(n^2).

情景四:(指数阶)

引入:递归算法的时间复杂度:递归总次数*每次递归次数;

斐波那契数列:

  • 第一个月初有一对刚诞生的兔子
  • 第二个月后(第三个月初)它们可以生育
  • 每月每对可生育的兔子会诞生下一对新兔子
  • 兔子永不死去

#include <iostream>
using namespace std;

unsigned long long Fibonacci(size_t n)
{
	return n<2 ? n:Fibonacci(n-2)+Fibonacci(n-1);
}

int main()
{
	size_t n;
	cin>>n;
	unsigned long long m=0;
	m=Fibonacci(n);
	cout<<m<<endl;
	getchar();
	return 0;
}

当我们用递归法写斐波那契数列,对程序进行不断测试时会发现:输入45时,程序会运行好长时间,算法执行效率太低了。

仔细分析一下(类似于完全二叉树),算法的执行次数为f(n)=2^n-1,关注算法的最坏运行情况,算法的时间复杂度为O(2^n)。

此时,我们应该优化一下程序:

#include <iostream>
using namespace std;

unsigned long long* Fibonacci(size_t n)
{
	int i;
	unsigned long long* a=new unsigned long long[n+1];
        a[0]=0;
	a[1]=1;
	for(i=2;i<=n;i++)
	{
		a[i]=a[i-1]+a[i-2];
	}
	return a;
}

int main()
{
	size_t n;
	int i;
	cout<<"数列长度为:";
	cin>>n;
    unsigned long long *a;
	a=Fibonacci(n);
	cout<<"Fibonacci数列:"<<endl;
	for(i=1;i<=n;i++)
	{
		cout<<a[i]<<"->";
	}

	cout<<"over"<<endl;
	getchar();
	return 0;
}


情景五:(对数阶)

折半查找:(用图示代替代码)


观察图我们发现,我们需要查找所需要元素时,会将确定区域不断分成2份,知道找到元素为止,由2^x=N得算法的执行次数f(n)=log2N,时间复杂度为O(logn).


总结:





  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值