第四章 字符串与多维数组

4.1字符串

1. 串:零个或多个字符组成的有限序列。
 串长度:串中所包含的字符个数。
 空串:长度为0的串,记为:" "

2.非空串通常记为:
      S=" s1 s2 …… sn "
其中:S是串名,双引号是定界符,双引号引起来的部分是串值si1≤i≤n)是一个任意字符。

3.子串:串中任意个连续的字符组成的子序列。
主串:包含子串的串。
子串的位置:子串的第一个字符在主串中的序号

4.串的数据对象约束为某个字符集。
 微机上常用的字符集是标准ASCII码,由 7 位二进制数表示一个字符,总共可以表示 128 个字符。
 扩展ASCII码由 8 位二进制数表示一个字符,总共可以表示 256 个字符,足够表示英语和一些特殊符号,但无法满足国际需要。
 Unicode 16 位二进制数表示一个字符,总共可以表示 216个字符,能够表示世界上所有语言的所有字符,包括亚洲国家的表意字符。为了保持兼容性,Unicode字符集中的前256个字符与扩展ASCII码完全相同。  

5.模式匹配:给定主串S="s1s2…sn"和模式T="t1t2…tm",在S中寻找T 的过程称为模式匹配。如果匹配成功,返回T S中的位置;如果匹配失败,返回0

6.模式匹配问题有什么特点:

算法的一次执行时间不容忽视:问题规模通常很大,常常需要在大量信息中进行匹配;
算法改进所取得的积累效益不容忽视:模式匹配操作经常被调用,执行频率高。

7.模式匹配----BF算法

int BF(char S[ ], char T[ ])
{
     i=0; j=0;   
    while (S[i]!='\0'&&T[j]!='\0')
    {
         if (S[i]==T[j]) {
             i++;   j++;
         }  
         else {
             i=i-j+1;    j=0;
         }   
     }
     if (T[j]=='\0') return (i-j+1);   
     else return 0;
}

4.2 多维数组

4.2.1多维数组的定义

1.数组是由一组类型相同的数据元素构成的有序集合,每个数据元素称为一个数组元素(简称为元素),每个元素受n(n≥1)个线性关系的约束,每个元素在n个线性关系中的序号i1i2in称为该元素的下标,并称该数组为 n 维数组。

2.多维数组的特点 

元素本身可以具有某种结构,属于同一数据类型;
数组是一个具有固定格式和数量的数据集合。

4.2.2数组的存储结构及寻址

一维数组

设一维数组的下标的范围为闭区间[lh],每个数组元素占用 c 个存储单元,则其任一元素 ai 的存储地址可由下式确定: 
Loc(ai)
Loc(al)(il)×c 

二维数组

常用的映射方法有两种:
按行优先:先行后列,先存储行号较小的元素,行号相同者先存储列号较小的元素。 
按列优先:先列后行,先存储列号较小的元素,列号相同者先存储行号较小的元素。 

N维数组

nn2)维数组一般也采用按行优先和按列优先两种存储方法。请自行推导任一元素存储地址的计算方法。

4.3  矩阵的压缩存储

1.特殊矩阵:矩阵中很多值相同的元素并且它们的分布有一定的规律。
 
稀疏矩阵:矩阵中有很多零元素。

压缩存储的基本思想是:
   
为多个值相同的元素只分配一个存储空间;
 
对零元素不分配存储空间。 

2.特殊矩阵的压缩存储——对角矩阵 

对角矩阵:所有非零元素都集中在以主对角线为中心的带状区域中,除了主对角线和它的上下方若干条对角线的元素外,所有其他元素都为零。 

3.对角矩阵的压缩存储

元素aij在一维数组中的序号
=2 + 3(i
2)+( ji + 2)
=2i+ j -2          
一维数组下标从0开始

元素aij在一维数组中的下标
= 2i+ j -3

4.稀疏矩阵的压缩存储 

将稀疏矩阵中的每个非零元素表示为:


(
行号,列号,非零元素值)——三元组

emplate <class DataType>
struct element
{    
    int row, col;                   //
行号,列号

    DataType item              //
非零元素值
};

三元组表:将稀疏矩阵的非零元素对应的三元组所构成的集合,按行优先的顺序排列成一个线性表。

5.稀疏矩阵的压缩存储——三元组顺序表

存储结构定义:
    const int MaxTerm=100;
    template <class DataType>
    struct SparseMatrix
    {
       DataType data[MaxTerm];       //
存储非零元素
       int mu, nu, tu;           //
行数、列数、非零元个数
    };

6.稀疏矩阵的压缩存储——十字链表

采用链接存储结构存储三元组表,每个非零元素对应的三元组存储为一个链表结点,结构为: 

row:存储非零元素的行号
col
:存储非零元素的列号
item
:存储非零元素的值
right
:指针域,指向同一行中的下一个三元组
down
:指针域,指向同一列中的下一个三元组.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值