智慧校园电子班牌小程序源码

智慧校园系统集学生管理、班级管理、校园管理于一身,融合学校教务管理、教师管理、学籍管理、考勤、信息发布、班级文明建设、校园风采、家校互通等一系列应用,为校园管理现代化、信息化提供有效解决工具。智慧班牌实现了学校、教师、学生、家长的多端信息互通及实时互动,推动校园建设的一体化、数据化、信息化。

 智慧校园应用

智慧校园系统平台源码-统一数据中心

智慧校园是一个可以统一共享数据中心的平台

统一共享数据中心平台有哪些特性呢?

1.它具有灵活可配置的标准管理策略

2.它具有精细化的数据管理能力

3.它具有数据服务自定义,权限分明的特点

4.它具有开放性接口服务的特性

5.它具有强大精确的数据决策分析功能

技术架构:

后端:Java

框架:springboot

前端页面:vue +element-ui

小程序:小程序原生开发

电子班牌:Java Android

基础数据平台

为学校提供一个统一标准,提供准确而又完善的基础信息、业务基础信息,为分析、统计、决策提供基础数据信息支撑。

智慧班牌


智慧班牌是智慧校园建设成果的最直接展示窗口。集成了考勤、预约拜访、考试成绩、课程信息、学情展示、学生评价、家长留言等功能。

家校互联

学生选课、考勤、请假、成绩、活动、放学等信息一键通知到家长,校内外点滴表现随时记录查看;教师、课程做出评价,建立评价数据体系。

智慧管理

在校园教务管理实践中,智慧校园为教职员工提供了学生管理、教师管理、考场管理、班级管理、成绩管理、荣誉管理、德育评价等各项管理系统,综合大数据分析,方便、快捷、准确。

档案资料管理

包括学生、教师、管理人员的档案信息,行政班的组织结构等信息。

班级名称显示

显示年级、班级、班级徽标。

班级风采展示

例如班级活动、师生风采、班会视频、学生发言、学生评比、作文展示。

电子课程表

可实时从校园系统中采集课程信息,也可手工录入课程信息,包括课程名称、任课老师、当前课程、下节课程等。


公共信息显示

时间、天气预报

通知信息显示

例如放假通知,学校新闻,调课信息、寻物启事等。

考场公示

所有教室集中联网统一发布考场名称、号码、考试时间、考场注意事项等。

人脸识别考勤

人脸识别考勤为现代比较先进的考勤方式,采用人脸识别算法技术,通过摄像头抓拍人像进行数据比对,有效的避免了代打卡的情况出现,从而达到考勤的目的。

考勤记录

可与校园刷卡系统整合,自动显示班级考勤情况。


体温检测

学生感觉身体不适时,在班牌处进行体温测量,如超出标准体温,系统自动报警,并提送信息给老师和家长,守护学生健康。

放学管理

集成一卡通,校园LED大屏同步显示放学动态,家长端即时接收到放学或留校通知。

荣誉展示

可以自定义小组信息,设立激励积分和荣誉,手动或自动根据评选标准呈现在值会班牌上。同时,学生可以通过一卡通在电子班牌学生中心内查询自己的积分和荣誉。

家长留言

实现家长通过微信企业号平台,建立家长与学校的注册关联关系,有效将有关信息发布给家长,家长可以通过微信发送留言显示在屏幕上。

设备监控

可以对设备进行重启、查看当前状态,定时开关机,查看设备具体信息等操作。


学生作业

老师通过手机端布置作业家长,学生可进行观看作业信息。

成绩查询

班主任和家长可对每个学生进行查看学生的成绩信息。

资源下载链接为: https://pan.quark.cn/s/ab08c24cda4d 本项目基于 PyTorch 实现了 CSRNet(卷积稀疏表示网络)人群计数模型。CSRNet 是一种高效且精准的人群密度估计方法,尤其适合高密度场景下的人群计数。该模型借助卷积神经网络(CNN)的特性,利用稀疏表示来应对复杂背景和密集人群的挑战。以下将详细介绍 CSRNet 的核心概念、结构及实现过程,并阐述人群计数的重要性。 人群计数在公共场所安全监控、交通管理和大型活动组织等领域极为关键。准确估计人群数量有助于保障安全和优化管理。传统计数方法如人工计数或基于规则的方法效率低且易出错而,深度学习技术的引入,尤其是 CSRNet 这类模型,显著提高了计数的准确性和效率。 CSRNet 的核心在于其深度卷积网络结构和稀疏表示能力。该模型通过尺度特征提取,适应不同大小的人头。其架构包含个卷积层,每层后接 Leaky ReLU 激活函数,增强非线性表达能力。此外,CSRNet 引入了空洞卷积(也称 atrous convolution),可在不增加参数数量的情况下扩大感受野,更高效地捕捉大范围信息。具体架构包括:输入层接收预处理后的图像;基础网络通常使用预训练的 VGG16 提取层次特征;尺度特征融合通过不同扩张率的空洞卷积获得不同分辨率的特征图;解码器利用反卷积操作将低分辨率特征图恢复至原始尺寸,结合尺度信息重建上下文;稀疏表示层是 CSRNet 的独特之处,通过稀疏编码和解码,将高维特征转换为低维稀疏表示,降低背景噪声影响,提升人头检测精度;输出层通过 1×1 卷积将特征图转化为人群密度图,再经全局平均池化和全连接层得到最终计数结果。 在实现过程中,需注意以下几点:数据预处理,如缩放、归一化、增强等,以提升模型泛化能力;训练策略,包括数据集划分、学习率调度、损失函数选择(如
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值