求N的阶乘有好些中方法,在此处,我用两种方法进行计算,并且进行检验。
求N的阶乘:!N=N*(N-1)*(N-2)*...*2*1
在求N的阶乘就意味着求N* (N-1)的阶乘,依次类推,因此:
1.用循环算法时,需要控制N的最大限度,用1*2*3*...*N
2.用递归算法时,需要控制递归不再进行的条件,即N的最小限度为1,因此条件不再继续为N<2时,返回1
在进行检验时,因为输入数据的局限性,因此 我利用随机数进行检验,检验的方法为,用循环算法得出的结果减去递归算法得出的结论,最后看结果是否为0,为0表示检验正确,不为0表示求阶乘时有错误
#include<iostream>
using namespace std;
//循环算法
int 阶乘(int n)
{
if (n < 0)
return -1;
int i = 1, factorial = 1;
for (; i < n; ++i)
factorial *= i;
return n*factorial;
}
//递归算法
int 阶乘2(int n)
{
if (n < 0)
return -1;
if (n < 2&& n!=0)
return 1;
return n*阶乘2(n - 1);
}
#include<time.h>
void time_srandd(int array[], int n)
{
srand((unsigned)time(NULL)); //用当前时间设置种子
int i = 0;
for (; i < n; ++i)
{
array[i] = rand() % n;
}
}
void test()
{
int array[100] = { 0 };
int n = sizeof(array) / sizeof(array[0]);
time_srandd(array, n);
int i = 0;
int ss = 0;
for (; i < n; ++i)
{
if ((阶乘(array[i]) - 阶乘2(array[i])) != 0)
cout << array[i]<<" ";
}
}
int main()
{
test();
return 0;
}