Supervised Learning with Python
This book attempts to educate the reader in a branch of machine
learning called supervised learning. This book covers a spectrum of
supervised learning algorithms and respective Python implementations.
Throughout the book, we are discussing building blocks of algorithms,
their nuts and bolts, mathematical foundations, and background process.
The learning is complemented by developing actual Python code from
scratch with step-by-step explanation of the code
【机器学习领域】终身机器学习范式及其应用:持续积累过往知识以提升未来学习与问题解决能力的设计与实现
内容概要:《Lifelong Machine Learning, Second Edition》一书介绍了持续学习这一先进的机器学习范式,该范式通过不断积累过往知识并用于未来的学习和问题解决。与当前主流的孤立学习方法不同,持续学习模仿了人类的学习方式,即利用已有知识快速从少量数据中学习新知识。书中详细探讨了持续学习的核心概念、方法和技术,包括如何将过去的知识融入新任务、如何在不同领域间迁移知识以及如何在实际应用中自监督学习新问题。此外,书中还涵盖了强化学习、信息提取、对话系统等多个领域的持续学习研究进展。
适合人群:对机器学习、数据挖掘、自然语言处理或模式识别感兴趣的本科生、研究生、研究人员和从业者。
使用场景及目标:①帮助读者理解持续学习的基本原理及其与传统机器学习范式的区别;②为研究者提供最新的研究方向和技术手段;③指导从业者将持续学习应用于实际项目中,如情感分析、推荐系统等;④支持教育工作者在相关课程中使用本书作为教材。
其他说明:本书由Zhiyuan Chen和Bing Liu编写,第二版增加了深度神经网络中的持续学习章节,并更新了部分内容以保持前沿性。书中提供了丰富的案例和评价数据集,有助于读者深入理解和实践持续学习的概念和技术。
The book is distributed on the “read first, buy later” principle
Let’s start by telling the truth: machines don’t learn. What a typical “learning machine”
does, is finding a mathematical formula, which, when applied to a collection of inputs (called
“training data”), produces the desired outputs. This mathematical formula also generates the
correct outputs for most other inputs (distinct from the training data) on the condition that
those inputs come from the same or a similar statistical distribution as the one the training
data was drawn from.
Why isn’t that learning? Because if you slightly distort the inputs, the output is very likely
to become completely wrong. It’s not how learning in animals works. If you learned to play
a video game by looking straight at the screen, you would still be a good player if someone
rotates the screen slightly. A mach
Unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analyt
The execution of the code examples provided in this book requires an installation
of Python 3.4.3 or newer on Mac OS X, Linux, or Microsoft Windows. We will make
frequent use of Python's essential libraries for scientifc computing throughout this
book, including SciPy, NumPy, scikit-learn, matplotlib, and pandas.
The frst chapter will provide you with instructions and useful tips to set up your
Python environment and these core libraries. We will add additional libraries to
our repertoire and installation instructions are provided in the respective chapters:
the NLTK library for natural language processing (Chapter 8, Applying Machine
Learning to Sentiment Analysis), the Flask web framework (Chapter 9, Embedding a
Machine Learning Algorithm into a Web Application), the seaborn library for
Python for Probability Statistics and Machine Learning
This book will teach you the fundamental concepts that underpin probability and
statistics and illustrate how they relate to machine learning via the Python language
and its powerful extensions. This is not a good first book in any of these topics
because we assume that you already had a decent undergraduate-level introduction
to probability and statistics. Furthermore, we also assume that you have a good
grasp of the basic mechanics of the Python language itself. Having said that, this
book is appropriate if you have this basic background and want to learn how to use
the scientific Python toolchain to investigate these topics. On the other hand, if you
are comfortable with Python, perhaps through working in another scientific field,
then this book will teach you the fundamentals of probab
Machine Learning Concepts with Python and The Jupyter Notebook Environment
I remember one day, when I was about 15, my little cousin had come over.
Being the good elder sister that I was, I spent time with her outside in the
garden, while all the adults were inside having a hearty conversation.
I soon found myself chasing after this active little 4 year old as she bustled
around, touching every little flower and inspecting every little creature.
At first, she carried this out as a silent activity, the only noise being her feet
as she ran across the grass. After a while, however, she could no longer contain
herself, and she began questioning me about each and every object and
phenomenon within her radius of sight. For a while, I felt thrilled that I was
old enough to answer these questions satisfactorily. This thrill was short-lived,
however, as she began delving
Hyperparameter Optimization in Machine Learning
Choosing the right hyperparameters when building a machine learning
model is one of the biggest problems faced by data science practitioners.
This book is a guide to hyperparameter optimization (HPO). It starts from
the very basic definition of hyperparameter and takes you all the way to
building your own AutoML script using advance HPO techniques. This
book is intended for both students and data science professionals.
The book consists of five chapters. Chapter 1 helps you to build an
understanding of how hyperparameters affect the overall process of
model building. It teaches the importance of HPO. Chapter 2 introduces
basic and easy-to-implement HPO methods. Chapter 3 takes you through
various techniques to tackle time and memory constraints. Chapters 4
and 5 discuss Bayesian optimizati
Deploy Machine Learning Models to Production
This book helps upcoming data scientists who have never deployed any
machine learning model. Most data scientists spend a lot of time analyzing
data and building models in Jupyter Notebooks but have never gotten an
opportunity to take them to the next level where those ML models are
exposed as APIs. This book helps those people in particular who want to
deploy these ML models in production and use the power of these models
in the background of a running application.
The term ML productionization covers lots of components and
platforms. The core idea of this book is not to look at each of the options
available but rather provide a holistic view on the frameworks for
productionizing models, from basic ML-based apps to complex ones.
Once you know how to take an ML model and put it in producti
Data Management in Machine Learning Systems
Machine learning (ML) and, in general, artificial intelligence (AI) techniques, are undoubtedly
changing many aspects of our lives and societies, even though often unnoticed. Applications
of ML and AI are ubiquitous in almost every domain and they leverage (1) a diverse set of algorithms from clustering, classification, regression, time series analysis, recommendations, and
reinforcement learning, together with (2) application-specific pipelines that connect these algorithms with steps for preparing data, incorporating domain knowledge, interpreting results, and
applying insights.
ML and AI are undergoing rapid and profound changes themselves as well, in terms
of new paradigms and algorithms, new system architectures and hardware accelerators, as well
as new techniques for preparing data a
Adversarial Machine Learning
The research area of adversarial machine learning has received a great deal of attention in recent
years, with much of this attention devoted to a phenomenon called adversarial examples. In its
common form, an adversarial example takes an image and adds a small amount of distortion, often invisible to a human observer, which changes the predicted label ascribed to the image (such
as predicting gibbon instead of panda, to use the most famous example of this). Our book, however, is not exactly an exploration of adversarial examples. Rather, our goal is to explain the
field of adversarial machine learning far more broadly, considering supervised and unsupervised
learning, as well as attacks on training data (poisoning attacks) and attacks at decision (prediction) time, of which adversarial ex
这篇文档《Advances in Machine Learning and Computational Intelligence.pdf》涵盖了机器学习和计算智能领域的最新进展 以下是主要内容的总结:
内容概要:本书《Advances in Machine Learning and Computational Intelligence》汇集了2019年国际机器学习与计算智能会议(ICMLCI 2019)的论文,涵盖了智能系统算法的最新进展。主要内容包括智能系统的算法研究,如自主代理、多代理系统、强化学习、机器学习、神经网络、进化计算、群体智能等。此外,书中还探讨了机器学习技术在不同领域的应用,如健康、商业、航空等,以及计算智能在解决实际问题中的应用,如物联网安全、区块链、云计算等。最后一部分介绍了前沿应用,展示了如何利用机器学习和计算智能间接解决问题。
适合人群:本书适用于研究生、博士生以及研究人员,尤其是那些希望深入了解智能系统算法及其应用的人士。
使用场景及目标:①帮助读者了解机器学习和计算智能的最新进展;②提供理论与实践相结合的案例研究;③为跨学科的研究人员提供智能系统算法的应用实例,如生物信息学、机械工程、经济学等领域。
其他说明:本书不仅包含学术研究,还包括实际应用案例,旨在为读者提供全面的理解和实用的指导。通过阅读本书,读者可以更好地掌握智能系统算法的核心概念和技术,并将其应用于解决复杂问题。
Ensemble Learning for AI Developer
Ensemble learning is fast becoming a popular choice for machine learning
models in the data science world. Ensemble methods combine the output
of machine learning models in many interesting ways. Even after years of
working on machine learning projects, we were unaware of the power of
ensemble methods, as this topic is usually neglected or only given a brief
overview in most machine learning courses and books. Like many others,
we came to know about the power of ensemble methods by checking
competitive machine learning scenarios. Competitive machine learning
platforms, like Kaggle, offer an unbiased review of machine learning
techniques. For the past few years, ensemble learning methods have
consistently outperformed competitive metrics. This itself speaks to the
benefit of learning ensemb
这篇文章详细介绍了多模态面部呈现攻击检测(Multi-Modal Face Presentation Attack Detection)领域的研究背景、动机、挑战和结果 以下是文章的主要内容总结:
内容概要:本文详细介绍了多模态面部呈现攻击检测领域的最新进展,重点讨论了CASIA-SURF数据集及其相关的挑战赛。CASIA-SURF是目前最大的多模态面部防伪数据集,包含1000名中国受试者的21000段视频,旨在解决现有数据集样本量小、模态单一的问题。文章首先阐述了面部识别系统中防伪检测的重要性及当前研究的局限性,随后介绍了CASIA-SURF数据集的设计理念、采集方法、预处理步骤以及统计特征。文中还回顾了挑战赛中各参赛队伍提出的方法,特别是前三名团队
Deep Neuro-Fuzzy Systems with Python
First of all, I would like to thank my co-author, Mr. Yunis. He is the
reason I got the chance to work on the Neuro Fuzzy Inference. Under his
leadership, I finished a working prototype for a client using ANFIS. That
gave me the boost to initiate this book and let readers know about this
field. I would also like to thank Mr. Sadhan Reddy, who helped me with the
technical aspects of this book. I would like to thank Shivani, Praveen, and
Rajeev (my students), who helped fill in many gaps in this book.
I would like to thank Aditee, the coordinating editor at Apress, who
kept on following up with me and guided me with queries. Without her,
I would have always fallen behind schedule. I would also like to thank Mr.
Celestin John, for providing me with the opportunity to write a book on
this topi
Deep Learning Projects Using TensorFlow2
TensorFlow 2.0 was officially released on September 30th, 2019. However,
the new version is very different than what most users are familiar with.
While programming with TensorFlow 2.0 is much simpler, most users still
prefer to use older versions. This book aims to help long-time users of
TensorFlow adjust to TensorFlow 2.0 and to help absolute beginners learn
TensorFlow 2.0.
这篇文章主要探讨了基于李雅普诺夫方法的深度强化学习在保证性能方面的应用 以下是文章的主要内容和结构:
内容概要:本书《Deep Reinforcement Learning with Guaranteed Performance》探讨了基于李雅普诺夫方法的深度强化学习及其在非线性系统最优控制中的应用。书中提出了一种近似最优自适应控制方法,结合泰勒展开、神经网络、估计器设计及滑模控制思想,解决了不同场景下的跟踪控制问题。该方法不仅保证了性能指标的渐近收敛,还确保了跟踪误差的渐近收敛至零。此外,书中还涉及了执行器饱和、冗余解析等问题,并提出了新的冗余解析方法,验证了所提方法的有效性和优越性。
适合人群:研究生及以上学历的研究人员,特别是从事自适应/最优控制、机器人学和动态神经网络领域的学术界和工业界研究人员。
使用场景及目标:①研究非线性系统的最优控制问题,特别是在存在输入约束和系统动力学的情况下;②解决带有参数不确定性的线性和非线性系统的跟踪控制问题;③探索基于李雅普诺夫方法的深度强化学习在非线性系统控制中的应用;④设计和验证针对冗余机械臂的新型冗余解析方法。
其他说明:本书分为七章,每章内容相对独立,便于读者理解。书中不仅提供了理论分析,还通过实际应用(如欠驱动船舶、冗余机械臂)验证了所提方法的有效性。此外,作者鼓励读者通过仿真和实验进一步验证书中提出的理论和技术。
这篇文章主要介绍了面向工程师的深度学习入门教程,重点在于如何使用Python和Google云平台(GCP)来实现深度学习模型 以下是文章的主要内容总结:
内容概要:本书《Introduction to Deep Learning for Engineers: Using Python and Google Cloud Platform》为工程领域的学生提供了一个简明易懂的深度学习入门教程。书中详细介绍了Python编程基础、NumPy数组操作、PyTorch库的设置与使用,以及人工神经网络的基本概念和架构。此外,还深入探讨了卷积神经网络(CNN)、递归神经网络(RNN)和其他深度学习模型的工作原理。书中特别强调了迁移学习的应用,展示了如何利用预训练模型(如EfficientNet-B7)进行多类图像分类任务。最后,通过一个实际案例研究,详细讲解了如何在Google Cloud Platform上设置虚拟机实例、配置PyTorch环境,并使用迁移学习方法对汽车图片进行分类。
适合人群:具备一定编程基础,尤其是对机器学习和深度学习感兴趣的工程专业本科生或研究生。
使用场景及目标:①帮助工程专业的学生快速掌握深度学习的基础知识和实践技能;②指导读者如何在Google Cloud Platform上搭建深度学习环境;③通过具体案例展示如何应用迁移学习技术解决实际问题;④提高读者对深度学习模型的理解和应用能力,特别是在计算机视觉领域。
其他说明:本书不仅提供了理论知识,还包含大量实用的操作步骤和代码示例,确保读者能够边学边练。书中还提到了一些优化技巧,如数据增强、自适应学习率等,有助于提升模型性能。此外,作者建议读者结合在线资源进一步学习Python编程和相关库的使用。
Computational Texture and Patterns- From Textons to Deep Learning
Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to
learn about the physical world. Our ability to capture visual imagery with cameras and sensors
has resulted in vast amounts of raw data, but using this information effectively in a task-specific
manner requires sophisticated computational representations. We enumerate specific desirable
traits for these representations: (1) intraclass invariance—to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction
and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and per
Deep Learning-Based Approaches for Sentiment Analysis
With the exponential growth in the use of social media networks such as Twitter,
Facebook, Flickr, and many others, an astronomical amount of big data has been
generated. This data is present in heterogeneous forms such as text, images, videos,
audio, and graphics. A substantial amount of this user-generated data is in the form
of text such as reviews, tweets, and blogs that provide numerous challenges as well
as opportunities to natural language processing (NLP) researchers for discovering
meaningful information used in various applications. The textual information
available is of two types: facts and opinion statements. Facts are objective sentences
about the entities. On the other hand, opinions are subjective in nature and generally
describe people’s sentiments toward entities and even
### 深度学习在PyTorch中的应用:批处理与优化方法详解. 批处理
内容概要:本文档来自École Polytechnique Fédérale de Lausanne,由Françoise Fleuret撰写,旨在深入探讨PyTorch在深度学习中的应用。文章首先介绍了批处理(Batch processing)的重要性,它允许使用高效的并行矩阵乘法实现,特别适用于缓存内存管理。接着讨论了随机梯度下降(SGD)及其变体,包括小批量随机梯度下降(Mini-batch SGD),并解释了其在实际应用中的优势和局限。文档还详细介绍了动量(Momentum)、Adam等优化算法,以及它们如何改进梯度下降方法。此外,文章讨论了Dropout作为一种正则化技术的作用,通过随机丢弃神经元来减少过拟合。接着介绍了批归一化(Batch Normalization),它可以加速训练并提高模型性能。最后,文档探讨了残差网络(Residual Networks),特别是通过身份映射来解决深层网络的优化难题。
适合人群:对深度学习有一定了解,希望深入了解PyTorch框架及其优化技巧的研究人员和工程师。
使用场景及目标:①理解批处理、随机梯度下降及其变体的工作原理和应用场景;②掌握动量、Adam等优化算法的具体实现和调参技巧;③学习Dropout和批归一化的使用方法及其对模型性能的影响;④了解残差网络的设计思想及其在深层网络中的应用。
其他说明:文档提供了大量代码示例和实验结果,帮助读者更好地理解和实践所介绍的概念和技术。建议读者在阅读过程中结合代码进行实验,以便更深入地掌握相关知识。
【大数据处理】Hive性能调优指南:涵盖存储格式选择、SQL优化及任务资源配置策略
内容概要:本文档详细介绍了Hive的调优方法,旨在提升Hive查询性能和资源利用率。文档首先指出Hive调优的重要性,并将其分为数据压缩与存储、SQL优化、参数调整、解决数据倾斜等多个模块。文中深入探讨了不同存储格式(如TextFile、SequenceFile、RCFile、ORCFile、Parquet)的特点及其适用场景,强调选择合适的压缩算法和存储格式对提高性能的关键作用。此外,文档还讲解了如何通过创建分区表、桶表和拆分表来优化查询效率,合理设置Map和Reduce任务数量,以及各种SQL优化技巧(如行列过滤、避免笛卡尔积、优化Join操作等)。最后,文档提到了一些高级调优策略,包括小文件合并、并行执行、推测执行、严格模式、JVM重用、Fetch抓取、本地模式以及其他参数调优。
适合人群:具备一定Hadoop和Hive基础,从事大数据开发与运维的技术人员。
使用场景及目标:①掌握Hive性能调优的基本原理和技术手段;②能够根据实际业务需求选择最佳的存储格式和压缩算法;③熟练运用SQL优化技巧提高查询效率;④了解并能实施高级调优策略以应对复杂场景下的性能瓶颈。
阅读建议:由于Hive调优涉及的知识点较多且较为复杂,建议读者结合自身业务特点逐步学习并实践文档中的各项优化措施。同时,应关注最新版本Hive的功能更新,灵活调整优化策略。
【高性能计算】ALCF深度学习框架优化:TensorFlow、PyTorch、Keras与Horovod在Theta超级计算机上的部署与调优
内容概要:本文介绍了阿贡领导计算设施(ALCF)上深度学习框架TensorFlow、PyTorch、Keras和Horovod的配置与优化方法。文章详细讲解了这些框架在Theta超级计算机上的安装、环境变量设置、线程管理、数据并行化以及性能调优等内容。重点包括如何正确加载和使用datascience模块,配置TensorFlow的多线程参数以优化性能,利用Horovod进行分布式训练,通过Cray ML插件提升扩展效率,以及使用TensorBoard和VTune工具进行可视化和性能分析。
适合人群:对高性能计算和深度学习感兴趣的科研人员、工程师和技术专家,尤其是那些需要在超级计算机上部署和优化深度学习模型的研究者。
使用场景及目标:①在Theta超级计算机上高效运行和优化深度学习模型;②掌握如何配置环境变量和线程参数以提高模型训练速度;③学习如何使用Horovod和Cray ML插件进行分布式训练,以加速大规模数据集的处理;④通过TensorBoard和VTune工具进行性能监控和优化。
其他说明:本文提供了详细的命令示例和配置指南,帮助用户在实际操作中避免常见错误。此外,还强调了在不同框架间选择合适的工具和方法的重要性,并提供了性能基准测试结果以指导最佳实践。
【数据库技术】ClickHouse查询与数据访问优化策略:提升大数据处理效率的方法和实践
内容概要:本文主要介绍了优化ClickHouse查询性能和数据访问的方法。首先,作者指出硬件配置(如CPU、内存、网络)对查询速度的影响有限,真正有效的优化需要从代码层面入手。接着,文章探讨了提前聚合数据的重要性,通过创建`MATERIALIZED VIEW`和使用`SummingMergeTree`引擎来实现高效的数据聚合。此外,还介绍了如何利用索引、过滤和时间范围查询等技术手段进一步提升查询效率。最后,作者强调了对数据分布的理解以及合理选择查询策略对于提高系统性能的关键作用。
适合人群:有一定数据库管理经验的技术人员,特别是那些正在或计划使用ClickHouse进行大规模数据分析和处理的研发人员。
使用场景及目标:①优化ClickHouse查询性能,减少查询响应时间;②掌握如何通过提前聚合数据、创建材料化视图、使用特定的数据类型和索引来加速查询;③理解并应用时间范围查询和其他高级查询技巧以提高效率。
阅读建议:由于本文涉及较多的技术细节和实际案例,建议读者结合自身业务场景深入研究,并尝试在自己的环境中实践文中提到的各种优化方法。同时,可以参考提供的参考资料进一步加深理解。
【计算机视觉】人脸识别技术综述:发展历程、常用数据库及测试协议详解
内容概要:本文档详细介绍了人脸识别技术的背景、发展历程、常用数据库及测试协议。首先阐述了人脸识别的基本概念及其相对于其他生物特征识别方式的独特优势,如采集便捷性和非接触性。接着回顾了人脸识别的发展历程,包括相关学术会议、期刊、学术团队及企业的贡献,特别是深度学习算法的引入对人脸识别性能的巨大提升。文档还列举了多个重要的人脸识别数据库,如Yale、Extended Yale B、ORL、CASIA-WebFace、LFW等,这些数据库在算法训练和测试中扮演着关键角色。最后,文档解释了1:1和1:N两种主要的测试协议,包括10折交叉验证、TPR@FAR、Rank-1、TPIR及Precision-Recall等具体测试方法。
适合人群:对计算机视觉领域感兴趣的研究人员、工程师及高校师生,尤其是希望深入了解人脸识别技术原理和发展趋势的专业人士。
使用场景及目标:①帮助读者理解人脸识别技术的基本原理和发展历史;②为研究人员提供常用数据库和测试协议的参考资料;③为企业开发者提供人脸识别技术的应用场景和技术选型指导。
其他说明:文档内容详实,涵盖广泛,适合用作人脸识别技术入门和进阶学习的参考资料。建议读者在学习过程中结合实际案例进行实践操作,以加深对技术细节的理解。此外,文档中提到的多个数据库和测试协议,为后续深入研究提供了宝贵的数据支持和评价标准。
【计算机视觉】人脸识别网络结构详解:卷积神经网络与通用分类网络在人脸模块中的应用设计详细介绍了人脸识别领域的
内容概要:本文由中科院自动化所博士王晓波主讲,深入讲解了人脸识别中的网络结构,主要包括卷积神经网络、通用分类网络和人脸识别模块。卷积神经网络部分介绍了卷积操作、空洞卷积、可变卷积、批归一化、组归一化、激活函数、池化及全连接层等概念和技术细节。通用分类网络涵盖了DeepID、ResNet、Wide-ResNet、VGGNet、GoogLeNet、SENet和AttentionNet等经典网络模型及其特点。人脸识别模块重点讲述了IR(Improved Residual)、ArcFace、SE-ResNet、SEResNet-IR等改进型网络结构,并结合实际案例如ICCV2019 LFR的不同版本进行了说明。最后布置了基于ResNet18和ResNet34架构用Pytorch搭建SEResNet18-IR和SEResNet34-IR的课程作业。
适合人群:对深度学习和计算机视觉有一定基础的研究人员或工程师,特别是对人脸识别领域感兴趣的从业者。
使用场景及目标:①理解卷积神经网络的基本构成及其在图像处理中的应用;②掌握多种经典分类网络的工作原理与优势;③熟悉人脸识别模块中不同改进型网络的设计思路和实现方法;④能够利用所学知识完成特定的人脸识别任务,如搭建改进型的ResNet模型。
阅读建议:本资料内容详实,涉及大量专业术语和技术细节,建议读者在学习过程中结合相关文献进行深入研究,同时动手实践以加深理解。对于初次接触这些概念的新手来说,可能需要反复阅读并逐步消化吸收。
Replicating MySQL Data to TiDB For Near Real-Time Analytics
Replicating MySQL Data to TiDB For Near Real-Time Analytics
【数据库管理】基于Kubernetes的ClickHouse集群部署与管理:容器化数据分析平台的构建和优化如何在Kubernetes
内容概要:本文介绍了如何在Kubernetes上部署和管理ClickHouse,由Altinity公司的Alexander Zaitsev在2019年的一次演讲中分享。文章首先概述了Kubernetes作为容器编排平台的优势,包括高效的资源分配、自动化部署和分布式应用管理。接着,文章详细讲解了在Kubernetes上运行ClickHouse的原因,如与其他应用程序的兼容性、数据仓库的快速搭建以及更简单的管理。文中展示了ClickHouse在Kubernetes中的架构,包括Zookeeper服务、副本服务、持久卷声明和配置映射等组件。此外,文章还讨论了运行ClickHouse时可能遇到的挑战,如存储、网络和透明度问题,并提供了通过ClickHouse Operator进行安装和配置的具体步骤。最后,文章介绍了ClickHouse Operator的功能和未来计划,如配置管理、健康检查和多区域部署等。
适合人群:对Kubernetes有一定了解并希望将ClickHouse迁移到Kubernetes环境中的数据库管理员、DevOps工程师和技术负责人。
使用场景及目标:①了解如何在Kubernetes环境中部署和管理ClickHouse集群;②掌握ClickHouse Operator的安装和配置方法;③探索ClickHouse在Kubernetes中的性能表现及优化策略。
阅读建议:由于ClickHouse Operator仍处于beta阶段,建议读者在实践中保持谨慎,仔细检查配置文件并关注错误日志。同时,鼓励读者参与社区讨论并在GitHub上报告问题,以便共同推进项目的完善和发展。
Low Cost Transactional and Analytics with MySQL + Clickhouse
Low Cost Transactional and Analytics with MySQL + Clickhouse
【数据库技术】TiDB与TiFlash扩展实现HTAP:实时分析与事务处理融合的架构设计与性能优化
内容概要:本文介绍了TiFlash作为TiDB的原生列式扩展,旨在解决传统数据平台复杂架构带来的维护成本高和数据延迟问题。TiFlash采用列式存储和向量化计算引擎,与TiDB紧密集成,提供强一致性的读操作,同时不影响OLTP性能。它通过Raft Learner机制同步数据,几乎不对OLTP引入额外开销。此外,TiFlash支持水平扩展,确保大规模数据存储,并通过标签机制实现资源隔离。TiFlash还支持MPP(大规模并行处理)集群,加速复杂查询。相比传统ETL流程,TiFlash使实时数据分析成为可能,帮助企业快速响应市场变化。
适合人群:对分布式系统和数据库技术感兴趣的开发者、架构师以及数据工程师,尤其是那些希望提升实时数据分析能力的技术团队。
使用场景及目标:① 实现OLTP和OLAP的无缝融合,避免ETL过程中的延迟和复杂性;② 提供高效的列式存储和向量化计算,优化分析型查询性能;③ 支持大规模数据的实时处理,满足企业对实时数据的需求。
阅读建议:TiFlash的设计和实现涉及多个高级概念和技术细节,建议读者在阅读时关注其架构设计、数据同步机制以及如何与现有系统的集成方式。理解这些内容有助于更好地应用TiFlash进行实时数据分析和处理。
【云计算与大数据存储】基于Clickhouse的K8s集群日志与监控数据长期存储解决方案:平台架构及优化策略
内容概要:本文介绍了Exness公司平台团队如何使用Clickhouse作为长期存储解决方案,用于存储来自Kubernetes(K8s)的度量、事件和日志数据。文章首先概述了平台架构、运维和故障排除等内容,接着详细描述了Clickhouse在生产环境中的应用,包括其易用性、可扩展性和管理便利性。目前,Exness拥有两个数据中心,超过500项服务和2500多个容器,每秒处理多达20万条度量数据和10万多条日志记录。Clickhouse集群由10多台服务器组成,配置有200多个CPU核心、1TB内存和20多TB SSD存储。此外,文章还讨论了早期使用Rancher时遇到的问题,如缺乏限流机制和服务端标签支持不足等,并展示了迁移到K8s后的改进之处,包括去除了单点故障、提高了性能和稳定性,以及对标准消息格式的支持。
适合人群:对大规模分布式系统、日志和监控系统感兴趣的IT专业人员,特别是那些正在寻找长期数据存储解决方案的技术团队。
使用场景及目标:①了解Clickhouse作为长期存储的优势及其在高并发环境下的表现;②评估从传统工具(如Elastic、Whisper)向Clickhouse迁移的可能性;③学习如何通过Kubernetes部署和管理Clickhouse集群,确保系统的高可用性和数据的安全性。
其他说明:文中提到的“和Танцы с бубнами- это про нас)”是一句俄语表达,意为“跳舞与仪式——这就是我们”,暗示团队在技术选型和实施过程中面临的挑战及乐趣。此外,文章最后提出了关于Clickhouse未来发展的几个思考方向,如Zookeeper替换为Etcd、云消息队列集成、权限管理和Prometheus指标导出等功能的增强。
ClickHouse文档-V2.2.pdf
ClickHouse文档-V2.2.pdf
TensorFlow 2.x in the Colaboratory Cloud
We apply the TensorFlow 2.x end-to-end open source platform within the Google
Colaboratory cloud service to demonstrate deep learning exercises with Python code
to help readers solve deep learning problems. The book is designed for those with
intermediate to advanced programming skills and some experience with machine
learning algorithms. We focus on application of the algorithms rather than theory.
So readers should read about the theory online or from other sources if appropriate.
The reader should also be willing to spend a lot of time working through the code
examples because they are pretty deep. But the effort will pay off because the exercises
are intended to help the reader tackle complex problems.
The book is organized into ten chapters. Chapter 1 introduces the topic of deep
lear
Data Representations, Transformations, and Statistics for Visual Reasoning
Analytical reasoning techniques are methods by which users explore their data to obtain insight
and knowledge that can directly support situational awareness and decision making. Recently, the
analytical reasoning process has been augmented through the use of interactive visual representations
and tools which utilize cognitive, design and perceptual principles.These tools are commonly referred
to as visual analytics tools, and the underlying methods and principles have roots in a variety of
disciplines. This chapter provides an introduction to young researchers as an overview of common
visual representations and statistical analysis methods utilized in a variety of visual analytics systems.
The application and design of visualization and analytical algorithms are subject to design decision
Exploring Representation in Evolutionary Level Design
Automatic content generation is the production of content for games, web pages, or other purposes by procedural means. Search-based automatic content generation employs search-based
algorithms to accomplish automatic content generation. This book presents a number of different techniques for search-based automatic content generation where the search algorithm is an
evolutionary algorithm. The chapters treat puzzle design, the creation of small maps or mazes,
the use of L-systems and a generalization of L-system to create terrain maps, the use of cellular automata to create maps, and, finally, the decomposition of the design problem for large,
complex maps culminating in the creation of a map for a fantasy game module with designersupplied content and tactical features.
The evolutionary alg
深度学习PyTorch基础教程:涵盖张量操作、自动求导与神经网络构建
内容概要:本文档是米兰理工大学电子计算机与生物工程系的博士课程资料,主要介绍PyTorch的基础知识及其应用。PyTorch是一个基于Python的科学计算包,适用于两类人群:需要GPU加速的NumPy替代品用户和深度学习研究人员。文档详细介绍了PyTorch的基本操作,如张量创建、加法运算、NumPy与PyTorch之间的转换、CUDA张量用于GPU计算、自动求导机制(autograd)、动态计算图与静态图的对比、神经网络模块torch.nn的使用、损失函数的定义、反向传播以及权重更新方法。此外,还讲解了优化器的使用,包括SGD、Adam等常用优化算法。
适合人群:具备一定编程基础并对深度学习感兴趣的研究生或研究人员,尤其是对PyTorch有兴趣的学习者。
使用场景及目标:①掌握PyTorch的基本操作,如张量运算、GPU加速、自动求导等;②理解并能实现简单的神经网络模型,包括卷积神经网络(CNN);③学会定义损失函数并进行反向传播和参数更新;④熟悉不同优化器的选择和使用。
阅读建议:此文档内容较为紧凑且技术性强,建议读者在学习过程中结合Jupyter Notebook进行实际操作练习,以加深对知识点的理解。同时,可以参考官方教程和其他相关资源,进一步巩固所学内容。
Semi-Supervised Learning and Domain Adaptation in Natural Language Processing
In natural language processing (NLP), we are interested in language at many different levels. In
multi-document summarization, we are concerned with collections of documents; if we want to
build a spam filter, we are concerned with single emails; in constituent-based parsing, we learn to
combine phrases; in dependency parsing, we predict syntactic dependencies between pairs of words;
in word sense disambiguation, we find the correct sense for each word in context. In order to learn
how to summarize, classify documents, parse sentences, or disambiguate words, we need to be able
to represent language in a compact, meaningful way. In NLP, we represent language (documents,
sentences, words) by arrays of numbers, most often 0s and 1s.
这篇文章是关于PyTorch-NLP库的文档,涵盖了多个模块和功能 以下是主要内容的总结:
内容概要:PyTorch-NLP 是一个用于自然语言处理(NLP)的Python库,支持快速原型设计。它提供了预训练的嵌入、采样器、数据集加载器、度量标准、神经网络模块和文本编码器等组件。该库包括多个模块,如`torchnlp.datasets`、`torchnlp.download`、`torchnlp.encoders`、`torchnlp.metrics`、`torchnlp.nn`、`torchnlp.random`、`torchnlp.samplers`、`torchnlp.utils` 和 `torchnlp.word_to_vector`。每个模块都有特定的功能,例如下载和缓存常用NLP数据集、下载文件并解压、对对象进行编码和解码、计算常见的NLP度量、提供常用的神经网络模块、控制随机状态以及提供预训练的词向量。
适用人群:适用于具有自然语言处理和机器学习基础知识的研究人员和工程师,尤其是那些希望快速搭建和测试NLP模型的开发者。
使用场景及目标:
1. 快速加载和处理多种常见的NLP数据集,如IMDB电影评论数据集、SNLI自然语言推理数据集、WMT翻译数据集等;
2. 实现和测试NLP任务所需的常见操作,如编码解码、度量计算、神经网络构建、随机数生成和控制、批处理采样等;
3. 利用预训练的词向量,如GloVe、FastText、CharNGram等,加速模型的开发和改进。
其他说明:PyTorch-NLP是一个开源项目,发布在BSD3许可证下。它不仅提供了丰富的API接口,还附带了详细的文档和示例代码,帮助用户更好地理解和使用该库。此外,它与PyTorch深度集成,可以方便地与其他PyTorch组件一起使用。
Text Analytics with Python
Data is the new oil and unstructured data—especially text, images, and videos—contains
a wealth of information. However, due to the inherent complexity in processing and
analyzing this data, people often refrain from spending extra time and effort venturing
out from structured datasets to analyze these unstructured sources of data, which can
be a potential gold mine. Natural language processing (NLP) is all about leveraging
tools, techniques, and algorithms to process and understand natural language-based
data, which is usually unstructured like text, speech, and so on. In this book, we will be
looking at tried and tested strategies—techniques and workflows—that can be leveraged
by practitioners and data scientists to extract useful insights from text data.
Being specialized in domains lik
Embeddings in Natural Language Processing- Theory and Advances in Vector Representations of Meaning
Artificial Intelligence (AI) has been one of the most important topics of discussion over the
past years. The goal in AI is to design algorithms that transform computers into “intelligent”
agents. By intelligence here we do not necessarily mean an extraordinary level of smartness; it
often involves basic problems that humans solve frequently in their day-to-day lives. This can
be as simple as recognizing faces in an image, driving a car, playing a board game, or reading
(and understanding) an article in a newspaper. The intelligent behavior exhibited by humans
when “reading” is one of the main goals for a subfield of AI called Natural Language Processing
(NLP). Natural language1
is one of the most complex tools used by humans for a wide range
of reasons, for instance to communicate with ot
Introduction to Semi-Supervised Learning
Semi-supervised learning is a learning paradigm concerned with the study of how computers and
natural systems such as humans learn in the presence of both labeled and unlabeled data.Traditionally,
learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection)
where all the data is unlabeled, or in the supervised paradigm (e.g., classification, regression) where
all the data is labeled. The goal of semi-supervised learning is to understand how combining labeled
and unlabeled data may change the learning behavior, and design algorithms that take advantage
of such a combination. Semi-supervised learning is of great interest in machine learning and data
mining because it can use readily available unlabeled data to improve supervised learning tasks when
the