poj2411之用1*2砖块铺满n*m-状态压缩dp

Mondriaan's Dream
Time Limit: 3000MS Memory Limit: 65536K
Total Submissions: 10549 Accepted: 6135

Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

Input

The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144
51205
未优化写法:
/*分析:用1*2的砖去恰好铺满n*m的空间,对于第k行第j列,有3种情况将该点铺满
1:由第k-1行第j列砖竖着铺将第k行第j列铺满
2:由第k行第j列被横铺砖铺满
3:第k行第j列砖竖着铺将该点铺满
所以对于每一列的情况其实有两种(1,0)表示该点铺砖还是不铺
而对于每一列必须到达的状态只有一种,就是被铺满(1)
但是由上述3种情况将铺满方式分成两种:
0和1表示被k-1行j列竖铺铺满和在k-1行被横铺铺满 
对于每一行列举每一种到达的状态j,dp[j]表示到达该状态有多少种情况
分析对于第k-1行状态j:10000111
需要到达第k行状态i:  01111011
如果需要到达第k行j列状态是0,则必须第k-1行该点状态不能是0,否则一定是连续两列竖放冲突
所以到达第k-1行该点只能是1,也就是说i|j一定每一位是1,也可以一步步判断是否满足第k行j列是0第k-1行j列是1 
如果需要到达第k行状态j列是1,则假如第k-1行该点是0,则该点状态可以到达,继续判断j+1列
假如第k-1行该点是1,则第k行j列的1一定是横铺到达的,所以k行第j+1列一定也被铺满为1
从而第k-1行j+1列一定不能竖铺,必须被横铺铺满,所以也是1.
于是综合的第k行j列和第k-1行j列的关系(每一行每一列都表示到达的状态)
1:下面这种情况从第j列继续去判断j+1列 
  1
  0
2:下面这种情况从第j列继续去判断j+1列 
  0
  1
3:下面这种情况从第j列判断第j+1列是否全是1,然后继续判断第j+2列
  1
  1 
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std;

const int MAX=(1<<11)+10;
int n,m;
LL temp[MAX],dp[MAX],bin[15];
bool mark[MAX];

bool check(int i){
	while(i){
		if(i&1){
			i>>=1;
			if(!(i&1))return false;//第j列是1则第j+1列必须是1 
			i>>=1;//继续判断下一列 
		}else i>>=1;//继续判断下一列 
	}
	return true;
}

void Init(){
	memset(mark,false,sizeof mark);
	memset(temp,0,sizeof temp);
	for(int i=0;i<bin[m];++i){//初始化第一行和可以到达什么状态 
		if(check(i))temp[i]=1,mark[i]=true;
	}
}

void DP(){
	for(int k=2;k<=n;++k){
		for(int i=0;i<bin[m];++i)dp[i]=0;
		for(int i=0;i<bin[m];++i){
			for(int j=0;j<bin[m];++j){
				if((i|j) != bin[m]-1)continue;//每一位或之后必须每一位是1(综合前面3种情况和分析可知)
				if(!mark[i&j])continue;//由初始化和前面分析三种情况分析可知i&j必须得到和初始化可以到达的状态一样才行
				dp[i]+=temp[j];//i可以从j到达,则增加j的方案数 
			}
		}
		for(int i=0;i<bin[m];++i)temp[i]=dp[i];
	}
}

int main(){
	bin[0]=1;
	for(int i=1;i<12;++i)bin[i]=2*bin[i-1];
	while(~scanf("%d%d",&n,&m),n+m){
		if(n<m)swap(n,m);//始终保持m<n,提高效率 
		Init();
		DP();
		printf("%lld\n",temp[bin[m]-1]);//输出最后一行到达时的状态必须全部是1 
	}
	return 0;
}
优化后的代码:大大提高效率( 不用搜索也可以采用邻接表记录能到达状态i的状态j,就不需要枚举所有状态j)
/*优化:不去盲目的列举所有状态i和j然后判断状态j能否到达i,这样效率很低,因为能到达i的状态j很少
因此对于每种状态i,由i区搜索能到达i的状态j,大大提高效率
有298ms->32ms 
*/ 
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std;

const int MAX=(1<<11)+10;
int n,m;
LL temp[MAX],dp[MAX],bin[15];

bool check(int i){
	while(i){
		if(i&1){
			i>>=1;
			if(!(i&1))return false;//第j列是1则第j+1列必须是1 
			i>>=1;//继续判断下一列 
		}else i>>=1;//继续判断下一列 
	}
	return true;
}

void Init(){
	memset(temp,0,sizeof temp);
	for(int i=0;i<bin[m];++i)if(check(i))temp[i]=1;//初始化第一行
}

void dfs(int k,int i,int j){
	if(k == m){dp[i]+=temp[j];return;}
	if(k>m)return;
	if((i>>k)&1){
		dfs(k+1,i,j);
		if((i>>(k+1))&1)dfs(k+2,i,j|(1<<k)|(1<<(k+1)));
	}
	else dfs(k+1,i,j|(1<<k));
}

void DP(){
	for(int k=2;k<=n;++k){
		for(int i=0;i<bin[m];++i)dp[i]=0;
		for(int i=0;i<bin[m];++i)dfs(0,i,0);
		for(int i=0;i<bin[m];++i)temp[i]=dp[i];
	}
}

int main(){
	bin[0]=1;
	for(int i=1;i<12;++i)bin[i]=2*bin[i-1];
	while(~scanf("%d%d",&n,&m),n+m){
		if(n<m)swap(n,m);//始终保持m<n,提高效率 
		Init();
		DP();
		printf("%lld\n",temp[bin[m]-1]);//输出最后一行到达时的状态必须全部是1 
	}
	return 0;
}



  • 10
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
这是一道比较经典的计数问题。题目描述如下: 给定一个 $n \times n$ 的网格图,其中一些格子被标记为障碍。一个连通块是指一些被标记为障碍的格子的集合,满足这些格子在网格图中连通。一个格子是连通的当且仅当它与另一个被标记为障碍的格子在网格图中有公共边。 现在,你需要计算在这个网格图中,有多少个不同的连通块,满足这个连通块的大小(即包含的格子数)恰好为 $k$。 这是一道比较经典的计数问题,一般可以通过计算生成函数的方法来解决。具体来说,我们可以定义一个生成函数 $F(x)$,其中 $[x^k]F(x)$ 表示大小为 $k$ 的连通块的个数。那么,我们可以考虑如何计算这个生成函数。 对于一个大小为 $k$ 的连通块,我们可以考虑它的形状。具体来说,我们可以考虑以该连通块的最左边、最上边的格子为起点,从上到下、从左到右遍历该连通块,把每个格子在该连通块中的相对位置记录下来。由于该连通块的大小为 $k$,因此这些相对位置一定是 $(x,y) \in [0,n-1]^2$ 中的 $k$ 个不同点。 现在,我们需要考虑如何计算这些点对应的连通块是否合法。具体来说,我们可以考虑从左到右、从上到下依次处理这些点,对于每个点 $(x,y)$,我们需要考虑它是否能够与左边的点和上边的点连通。具体来说,如果 $(x-1,y)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们就是连通的;同样,如果 $(x,y-1)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们也是连通的。如果 $(x,y)$ 与左边和上边的点都不连通,那么说明这个点不属于该连通块。 考虑到每个点最多只有两个方向需要检查,因此时间复杂度为 $O(n^2 k)$。不过,我们可以使用类似于矩阵乘法的思想,将这个过程优化到 $O(k^3)$ 的时间复杂度。 具体来说,我们可以设 $f_{i,j,k}$ 表示状态 $(i,j)$ 所代表的点在连通块中,且连通块的大小为 $k$ 的方案数。显然,对于一个合法的 $(i,j,k)$,我们可以考虑 $(i-1,j,k-1)$ 和 $(i,j-1,k-1)$ 这两个状态,然后把点 $(i,j)$ 加入到它们所代表的连通块中。因此,我们可以设计一个 $O(k^3)$ 的 DP 状态转移,计算 $f_{i,j,k}$。 具体来说,我们可以考虑枚举连通块所包含的最右边和最下边的格子的坐标 $(x,y)$,然后计算 $f_{x,y,k}$。对于一个合法的 $(x,y,k)$,我们可以考虑将 $(x,y)$ 所代表的点加入到 $(x-1,y,k-1)$ 和 $(x,y-1,k-1)$ 所代表的连通块中。不过,这里需要注意一个细节:如果 $(x-1,y)$ 和 $(x,y)$ 在网格图中没有相邻边,那么它们不能算作连通的。因此,我们需要特判这个情况。 最终,$f_{n,n,k}$ 就是大小为 $k$ 的连通块的个数,时间复杂度为 $O(n^2 k + k^3)$。 参考代码:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值