冒泡法排序的主要原理
冒泡排序(Bubble Sort)是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。遍历数列的工作是重复进行的,直到没有再需要交换的元素为止,这意味着该数列已经排序完成。
冒泡排序的主要原理可以概括为以下几点:
-
比较元素
冒泡排序通过比较相邻的元素来确定它们的顺序。如果第一个元素比第二个元素大(对于升序排序),则交换它们的位置。 -
逐步推进
随后,再用交换完毕后(或没交换)的第一个元素与第三个元素比较,大则交换。这样第一轮就会“冒泡”出一个最小(或最大)的元素排在第一位,第二轮冒出第二小(或大)的元素在第二位……以此类推。 -
重复过程
这个过程会重复进行,直到整个数列有序。在每次遍历中,未排序部分的长度会逐渐减小,直到最后只剩下一个元素,此时数列已经完全有序。 -
优化(选做)
冒泡排序的一个优化是在每一轮遍历后检查是否发生了交换。如果没有发生交换,说明数列已经有序,可以提前结束排序过程。
冒泡法排序的复杂度
冒泡排序(Bubble Sort)是一种简单的排序算法,其主要原理是通过重复地遍历要排序的数列,比较相邻的元素,并在必要时交换它们的位置,使得每一轮遍历之后,未排序部分的最大元素逐渐“冒泡”到数列的末端。这个过程重复进行,直到整个数列有序为止。
冒泡排序的复杂度分析如下:
冒泡法的时间复杂度(Time Complexity)
最佳情况(Best Case)
- 如果输入数组已经是有序的,那么冒泡排序只需要进行一趟遍历(n-1次比较),因为每一对比较都会发现元素已经是有序的,不会进行交换
- 因此,最佳情况下的时间复杂度为 O(n)
最坏情况(Worst Case)
- 如果输入数组是逆序的,那么冒泡排序需要进行大量的比较和交换操作
- 每一趟遍历都需要对 n−1、n−2、…、2、1 个元素进行比较和可能的交换
- 因此,总比较次数为 2 n ( n − 1 ) \frac{2}{n(n - 1)} n(n−1)2 ,总交换次数也为 2 n ( n − 1 ) \frac{2}{n(n - 1)} n(n−1)2 (在最坏情况下,每次比较都需要交换)
- 所以,最坏情况下的时间复杂度为 O ( n 2 ) O(n^2) O(n2)
平均情况(Average Case)
- 平均情况下,冒泡排序的时间复杂度仍然是 O ( n 2 ) O(n^2) O(n2)
- 尽管对于某些特定类型的输入(如部分有序数组),冒泡排序的性能可能会稍好一些,但总体上,其性能不会显著优于最坏情况
空间复杂度(Space Complexity)
- 冒泡排序是一种原地排序算法(in-place sorting algorithm),它只需要常数级别的额外空间(用于存储临时变量,如交换时的中间值)
- 因此,空间复杂度为 O(1)
冒泡法排序代码实现
首先要写好头文件和mian函数(废话):
#include<bits/stdc++.h>
#define int long long // 宏命令,可省略
using namespace std;
signed main(){ // 因为将int定义为“long long”,mian函数返回值类型要改变
}
接下来是输入环节:先输需要排列的数的个数,再将它们依次输入进数组进行排序。
int n;
cin >> n; // 输入需要排列的数的个数
int shulie[1000] = {}; // 定义排列数组并初始化
for(int i = 0; i < n; ++i){
cin >> shulie[i]; // 输入需要排列的n个数
}
输入完毕后,就要开始排序了。这是一个双层循环,外层循环每循环一次冒出一个当前的目标数字,放在排列数组的循环位置。
PS:排序函数:swap()
for(int i = 0; i < n - 1; ++i){
for(int j = i + 1; j < n; ++j){
if(shulie[i] > shulie[j]){
swap(shulie[i], shulie[j]);
}
}
}
最后,就是开心的输出环节了。遍历数组依次输出就好
记得加空格!!!
不然你会发现数字都粘在一起了
上代码:
for(int i = 0; i < n; ++i){
cout << shulie[i] <<" ";
}
over!
最后的最后,放出完整代码:
#include<bits/stdc++.h>
#define int long long // 宏命令,可省略
using namespace std;
signed main(){ // 因为将int定义为“long long”,mian函数返回值类型要改变
int n;
cin >> n; // 输入需要排列的数的个数
int shulie[1000] = {}; // 定义排列数组并初始化
for(int i = 0; i < n; ++i){
cin >> shulie[i]; // 输入需要排列的n个数
}
// 控制循环次数,小心数组越界
for(int i = 0; i < n - 1; ++i){
for(int j = i + 1; j < n; ++j){
if(shulie[i] > shulie[j]){
swap(shulie[i], shulie[j]); // 交换大业
}
}
}
for(int i = 0; i < n; ++i){
cout << shulie[i] <<" "; // 快乐输出
}
}
程序测试:
输入:
7
1 4 2 5 6 3 7
输出:
1 2 3 4 5 6 7