冒泡法排序——C++

冒泡法排序的主要原理

冒泡排序(Bubble Sort)是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。遍历数列的工作是重复进行的,直到没有再需要交换的元素为止,这意味着该数列已经排序完成。

冒泡排序的主要原理可以概括为以下几点:

  • 比较元素
    冒泡排序通过比较相邻的元素来确定它们的顺序。如果第一个元素比第二个元素大(对于升序排序),则交换它们的位置。

  • 逐步推进
    随后,再用交换完毕后(或没交换)的第一个元素与第三个元素比较,大则交换。这样第一轮就会“冒泡”出一个最小(或最大)的元素排在第一位,第二轮冒出第二小(或大)的元素在第二位……以此类推。

  • 重复过程
    这个过程会重复进行,直到整个数列有序。在每次遍历中,未排序部分的长度会逐渐减小,直到最后只剩下一个元素,此时数列已经完全有序。

  • 优化(选做)
    冒泡排序的一个优化是在每一轮遍历后检查是否发生了交换。如果没有发生交换,说明数列已经有序,可以提前结束排序过程。

冒泡法排序的复杂度

冒泡排序(Bubble Sort)是一种简单的排序算法,其主要原理是通过重复地遍历要排序的数列,比较相邻的元素,并在必要时交换它们的位置,使得每一轮遍历之后,未排序部分的最大元素逐渐“冒泡”到数列的末端。这个过程重复进行,直到整个数列有序为止。
冒泡排序的复杂度分析如下:

冒泡法的时间复杂度(Time Complexity)

最佳情况(Best Case)

  • 如果输入数组已经是有序的,那么冒泡排序只需要进行一趟遍历(n-1次比较),因为每一对比较都会发现元素已经是有序的,不会进行交换
  • 因此,最佳情况下的时间复杂度为 O(n)

最坏情况(Worst Case)

  • 如果输入数组是逆序的,那么冒泡排序需要进行大量的比较和交换操作
  • 每一趟遍历都需要对 n−1、n−2、…、2、1 个元素进行比较和可能的交换
  • 因此,总比较次数为 2 n ( n − 1 ) \frac{2}{n(n - 1)} n(n1)2 ,总交换次数也为 2 n ( n − 1 ) \frac{2}{n(n - 1)} n(n1)2 (在最坏情况下,每次比较都需要交换)
  • 所以,最坏情况下的时间复杂度为 O ( n 2 ) O(n^2) O(n2)

平均情况(Average Case)

  • 平均情况下,冒泡排序的时间复杂度仍然是 O ( n 2 ) O(n^2) O(n2)
  • 尽管对于某些特定类型的输入(如部分有序数组),冒泡排序的性能可能会稍好一些,但总体上,其性能不会显著优于最坏情况

空间复杂度(Space Complexity)

  • 冒泡排序是一种原地排序算法(in-place sorting algorithm),它只需要常数级别的额外空间(用于存储临时变量,如交换时的中间值)
  • 因此,空间复杂度为 O(1)

冒泡法排序代码实现

首先要写好头文件和mian函数(废话):

#include<bits/stdc++.h>
#define int long long  // 宏命令,可省略
using namespace std;

signed main(){   // 因为将int定义为“long long”,mian函数返回值类型要改变
}

接下来是输入环节:先输需要排列的数的个数,再将它们依次输入进数组进行排序。

int n;
cin >> n; // 输入需要排列的数的个数
int shulie[1000] = {}; // 定义排列数组并初始化
for(int i = 0; i < n; ++i){
	cin >> shulie[i]; // 输入需要排列的n个数
}

输入完毕后,就要开始排序了。这是一个双层循环,外层循环每循环一次冒出一个当前的目标数字,放在排列数组的循环位置。

PS:排序函数:swap()

for(int i = 0; i < n - 1; ++i){
	for(int j = i + 1; j < n; ++j){
		if(shulie[i] > shulie[j]){
			swap(shulie[i], shulie[j]);
		}
	}
}

最后,就是开心的输出环节了。遍历数组依次输出就好

记得加空格!!!
不然你会发现数字都粘在一起了

上代码:

for(int i = 0; i < n; ++i){
	cout << shulie[i] <<" ";
}

over!

最后的最后,放出完整代码:

#include<bits/stdc++.h>
#define int long long  // 宏命令,可省略
using namespace std;

signed main(){   // 因为将int定义为“long long”,mian函数返回值类型要改变
	int n;
	cin >> n; // 输入需要排列的数的个数
	int shulie[1000] = {}; // 定义排列数组并初始化
	for(int i = 0; i < n; ++i){
		cin >> shulie[i]; // 输入需要排列的n个数
	}
	// 控制循环次数,小心数组越界
	for(int i = 0; i < n - 1; ++i){
		for(int j = i + 1; j < n; ++j){
			if(shulie[i] > shulie[j]){
				swap(shulie[i], shulie[j]); // 交换大业
			}
		}
	}
	for(int i = 0; i < n; ++i){
		cout << shulie[i] <<" "; // 快乐输出
	}
}

程序测试:

输入:
7
1 4 2 5 6 3 7

输出:
1 2 3 4 5 6 7

程序运行截图

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心-远-地-自-偏

天生我材必有用,千金散尽还复来

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值