Description
若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。
又如:对于10进制数87:
STEP1:87+78 = 165 STEP2:165+561 = 726
STEP3:726+627 = 1353 STEP4:1353+3531 = 4884
在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。
写一个程序,给定一个N(2<=N<=16)进制数M,求最少经过几步可以得到回文数。如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible!”
Input
共两行
第一行为进制数N(2<=N<=16)
第二行为N进制数M(0<=M<=maxlongint)
Output
共一行,为“STEP=经过的步数”或“Impossible!”
Sample Input
9
87
Sample Output
STEP=6
个人思路:
通过主函数判断是否为N进制的回文数,如果是输出步骤数,否则通过函数进行相加;继续判断。通过while控制步骤在30步以内。
参考代码:
include <stdio.h>
include <string.h>
/*
函数参数:N进制数, N进制数的长度, N
函数功能:将num字符串转换为输入的num字符串正反序相加
*/
void fun(char *num, int len, int n)
{
char alphabet;
int digit;
int i;
int flag = 0;
int temp[1000] = {0}; //存储每位字符的整数
int result[1000] = {0}; //存储相加后的结果
for(i=0; i<len; i++) //将num字符串的每位字符转换为数字
{
alphabet = num[i];
switch(alphabet)
{
case '0': temp[i] = 0;break;
case '1': temp[i] = 1;break;
case '2': temp[i] = 2;break;
case '3': temp[i] = 3;break;
case '4': temp[i] = 4;break;
case '5': temp[i] = 5;break;
case '6': temp[i] = 6;break;
case '7': temp[i] = 7;break;
case '8': temp[i] = 8;break;
case '9': temp[i] = 9;break;
case 'A': temp[i] = 10;break;
case 'B': temp[i] = 11;break;
case 'C': temp[i] = 12;break;
case 'D': temp[i] = 13;break;
case 'E': temp[i] = 14;break;
case 'F': temp[i] = 15;break;
}
}
for(i=0; i<len; i++) //进行相加
{
result[i] += temp[i] + temp[len-1-i];
if(result[i] >= n)
{
result[i+1] += 1;
result[i] %= n;
if(i==len-1)
{
flag = 1;
}
}
}
if(flag == 1)
{
len++;
}
for(i=0; i<len; i++) //将每位整数转换为字符
{
digit = result[i];
switch(digit)
{
case 0: num[i] = '0';break;
case 1: num[i] = '1';break;
case 2: num[i] = '2';break;
case 3: num[i] = '3';break;
case 4: num[i] = '4';break;
case 5: num[i] = '5';break;
case 6: num[i] = '6';break;
case 7: num[i] = '7';break;
case 8: num[i] = '8';break;
case 9: num[i] = '9';break;
case 10: num[i] = 'A';break;
case 11: num[i] = 'B';break;
case 12: num[i] = 'C';break;
case 13: num[i] = 'D';break;
case 14: num[i] = 'E';break;
case 15: num[i] = 'F';break;
}
}
}
int main()
{
int i;
int len;
int n;
int step = 0, flag = 0;
char num[1000] = {0};
scanf("%d %s", &n, num);
while(step <= 30) //控制步骤不超过30
{
flag = 0;
len = strlen(num);
for(i=0; i<len/2; i++) //判断是否为回文数
{
if(num[i] != num[len-1-i])
{
flag = 1;
break;
}
}
if(flag == 1)
{
fun(num, len, n);
}
else
{
printf("STEP=%d\n", step);
break;
}
step++;
}
if(step == 31)
{
printf("Impossible!\n");
}
return 0;
}