回文数


Description

若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。
又如:对于10进制数87:
STEP1:87+78 = 165         STEP2:165+561 = 726
STEP3:726+627 = 1353        STEP4:1353+3531 = 4884
在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。
写一个程序,给定一个N(2<=N<=16)进制数M,求最少经过几步可以得到回文数。如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible!”

Input

共两行
第一行为进制数N(2<=N<=16)
第二行为N进制数M(0<=M<=maxlongint)

Output

共一行,为“STEP=经过的步数”或“Impossible!”

Sample Input

9
87

Sample Output

STEP=6

个人思路:
通过主函数判断是否为N进制的回文数,如果是输出步骤数,否则通过函数进行相加;继续判断。通过while控制步骤在30步以内。

参考代码:

include <stdio.h>
include <string.h>
/*
函数参数:N进制数, N进制数的长度, N
函数功能:将num字符串转换为输入的num字符串正反序相加
*/
void fun(char *num, int len, int n)
{
    char alphabet;
    int digit;
    int i;
    int flag = 0;
    int temp[1000] = {0};    //存储每位字符的整数
    int result[1000] = {0};  //存储相加后的结果
    for(i=0; i<len; i++)     //将num字符串的每位字符转换为数字
    {
        alphabet = num[i];
        switch(alphabet)
            {
                case '0': temp[i] = 0;break;
                case '1': temp[i] = 1;break;
                case '2': temp[i] = 2;break;
                case '3': temp[i] = 3;break;
                case '4': temp[i] = 4;break;
                case '5': temp[i] = 5;break;
                case '6': temp[i] = 6;break;
                case '7': temp[i] = 7;break;
                case '8': temp[i] = 8;break;
                case '9': temp[i] = 9;break;
                case 'A': temp[i] = 10;break;
                case 'B': temp[i] = 11;break;
                case 'C': temp[i] = 12;break;
                case 'D': temp[i] = 13;break;
                case 'E': temp[i] = 14;break;
                case 'F': temp[i] = 15;break;
            }
    }
    for(i=0; i<len; i++)    //进行相加
    {
        result[i] += temp[i] + temp[len-1-i];
        if(result[i] >= n)
        {
            result[i+1] += 1;
            result[i] %= n;
            if(i==len-1)
            {
                flag = 1;
            }
        }
    }
    if(flag == 1)
    {
        len++;
    }
        for(i=0; i<len; i++)  //将每位整数转换为字符
    {
        digit = result[i];
        switch(digit)
            {
                case 0: num[i] = '0';break;
                case 1: num[i] = '1';break;
                case 2: num[i] = '2';break;
                case 3: num[i] = '3';break;
                case 4: num[i] = '4';break;
                case 5: num[i] = '5';break;
                case 6: num[i] = '6';break;
                case 7: num[i] = '7';break;
                case 8: num[i] = '8';break;
                case 9: num[i] = '9';break;
                case 10: num[i] = 'A';break;
                case 11: num[i] = 'B';break;
                case 12: num[i] = 'C';break;
                case 13: num[i] = 'D';break;
                case 14: num[i] = 'E';break;
                case 15: num[i] = 'F';break;
            }
    }
}

int main()             
{
    int i;
    int len;
    int n;
    int step = 0, flag = 0;
    char num[1000] = {0};
    scanf("%d %s", &n, num);
    while(step <= 30)      //控制步骤不超过30
    {
        flag = 0;
        len = strlen(num);
        for(i=0; i<len/2; i++)  //判断是否为回文数
        {
            if(num[i] != num[len-1-i])
            {
                flag = 1;
                break;
            }
        }
        if(flag == 1)
        {
            fun(num, len, n);
        }
        else
        {
            printf("STEP=%d\n", step);
            break;
        }
        step++;
    }
    if(step == 31)
    {
        printf("Impossible!\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值