数据离散化


应用:

对于数据量比较小,但是数据范围比较大的题目,可以运用离散化来实现,因为开太大的数组也不现实

实现

思路:对于较大的数据范围可以进行映射到连续的数据数量,可以减少空间的使用和运算量,对于数据的储存肯呢个出现数据的重复,所以需要去重处理,对于离散化关键在于怎样处理映射和原数据之间的关系

映射处理

实现此对应的是用的二分,找到第一个大于等于x的位置

int find(ll x)
{
    ll l=0,r=alls.size();
    while(l<r)
    {
        ll mid=l+r >>1;
        if(alls[mid]>=x)r=mid;
        else l=mid+1;
    }
    return r+1;
}

返回r+1是保证映射是从1开始的

去重处理

alls.eares(unique(alls.begin(),alls.end()),alls.end());

对于存在重复数组a[100],unique(a.begin(),a.end());j将不重复的数据按照原来的相对位置排到前面,返回第一个重复的数据的位置,上述调用的c++的函数,也可以通过下面实现
对于int型的数据

int unique(int a[])
{
    int c[Max],j=0;
    for(int i=0;i<=l;i++)//l 数组a的长度
    {
       if(i==0||a[i-1]!=a[i])
       c[j++]=a[i];
    }
    for(int i=0;i<j;i++)
    a[i]=c[i];
    return a+j;
}

完整实现

int a[Max];
vector<ll>alls;//所有要离散化的数
int find(ll x)
{
    ll l=0,r=alls.size();
    while(l<r)
    {
        ll mid=l+r >>1;
        if(alls[mid]>=x)r=mid;
        else l=mid+1;
    }
    return r+1;
}
int main()
{  
   int n;
   for(int i=0;i<n;i++)
   {
      int x;
      cin>>x;
      alls.push_back(x);
   }
   //去重
   sort(alls.begin(),alls.end());
   alls.erase(unique(alls.begin(),alls.end()),alls.end());
}

典型例题
区间和

#include<bits/stdc++.h>
#define ll long long
#define PI 3.141592653589793
#define E 2.718281828459045
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define FO( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define lowbit(a) ((a)&-(a))
#define PII pair<ll ,ll >
#define ft first
#define sd second
typedef unsigned long long ull;
const ll mod=10007;
const ll INF=0x3f3f3f3f3f3f3f3f;
const ll Max=300010;
using namespace std;
ll t,n,m,k;
ll ans;
ll a[Max],s[Max];
vector<ll>alls;//所有要离散化的数
vector<PII>add,query;
/*queue<ll> q;
stack<ll> s;
//升序队列
priority_queue <int,vector<int>,greater<int> > q;
//降序队列
priority_queue <int,vector<int>,less<int> >q;*/
ll find(ll x)
{
    ll l=0,r=alls.size();
    while(l<r)
    {
        ll mid=l+r >>1;
        if(alls[mid]>=x)r=mid;
        else l=mid+1;
    }
    return r+1;
}
int main()
{
    ios::sync_with_stdio(false);
    cin>>n>>m;
    for(ll i=0;i<n;i++)
    {
        ll x,c;
        cin>>x>>c;
        add.push_back({x,c});
        alls.push_back(x);
    }
    for(int i=0;i<m;i++)
    {
         ll l,r;
         cin>>l>>r;
         query.push_back({l,r});
         alls.push_back(l);
         alls.push_back(r);
    }
    //去重
    sort(alls.begin(),alls.end());
    alls.erase(unique(alls.begin(),alls.end()),alls.end());
    //处理插入
    for(auto item:add)
    {
        ll x=find(item.first);
        a[x]+=item.sd;
    }
    //预处理前缀和
    for(ll i=1;i<=alls.size();i++)
        s[i]=s[i-1]+a[i];
    for(auto item:query)
    {
        ll l=find(item.ft),r=find(item.sd);
        cout<<s[r]-s[l-1]<<endl;
    }
    return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数据离散化是将连续型数据划分为有限数量的离散区间的过程。在Python中,可以使用以下方法进行数据离散化: 1. 使用cut函数:cut函数是pandas库中的一个函数,可以将数据分段为离散的区间。它可以根据指定的分段数目或者自定义的分段边界对数据进行离散化。下面是一个示例代码: ```python import pandas as pd # 创建一个示例数据集 data = pd.DataFrame({'score': [80, 90, 85, 70, 60, 50, 75]}) # 使用cut函数进行离散化,默认分为4个区间 data['score_category'] = pd.cut(data['score'], 4) # 打印结果 print(data) ``` 运行以上代码会将得分分成4个离散的区间,并添加一个新的列'score_category',表示每个数据所属的区间。 2. 使用qcut函数:qcut函数也是pandas库中的一个函数,可以根据数据的分位数进行离散化。它可以根据指定的分段数目或者自定义的分位数对数据进行离散化。下面是一个示例代码: ```python import pandas as pd # 创建一个示例数据集 data = pd.DataFrame({'score': [80, 90, 85, 70, 60, 50, 75]}) # 使用qcut函数进行离散化,默认分为4个区间 data['score_category'] = pd.qcut(data['score'], 4) # 打印结果 print(data) ``` 运行以上代码会将得分分成4个离散的区间,并添加一个新的列'score_category',表示每个数据所属的区间。 这些方法可以根据具体的需求选择使用,根据数据的特点和分布情况来确定合适的离散化方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值