算法模版 辗转相除

算法概述:

设两数为ab(a>b),用gcd(a,b)表示ab的最大公约数,r=a (mod b) a除以b的余数,ka除以b的商,即a÷b=k.......r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)

第一步:令c=gcd(a,b),则设a=mcb=nc

第二步:根据前提可知r =a-kb=mc-knc=(m-kn)c

第三步:根据第二步结果可知c也是r的因数

第四步:可以断定m-knn互质(假设m-kn=xdn=yd (d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)cdb=nc=ycd,则ab的一个公约数cd>c,故cab的最大公约数,与前面结论矛盾),因此c也是br的最大公约数。

从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)

证毕。

以上步骤的操作是建立在刚开始时r≠0的基础之上的。即mn亦互质。


证明请自行搜索。

C++描述:

int gcb(int x, int y) {
  if (x % y)
    return gcb(y , x % y);
  return y;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值