- 博客(52)
- 收藏
- 关注
原创 Python代码规范:编写优雅且高效的Python代码
Python以其简洁和易读性而闻名,但即使是最简洁的语言也需要遵循一定的编码规范来确保代码的可读性和可维护性。此外,在多行表达式或函数调用时,推荐使用圆括号、方括号或花括号实现隐式的续行,而非显式的反斜杠(导入语句应当按照特定顺序排列:首先是标准库导入,其次是第三方库导入,最后才是本地应用/库的具体导入。每组导入之间用一个空行分隔。例如,二元操作符两侧都应有一个空格,但在逗号、分号、冒号前不应有空格。每个模块、类及公共函数都应该包含一个文档字符串,它位于定义的第一行,用于描述功能、参数、返回值等信息。
2024-12-11 11:44:12
327
原创 动态规划算法套路解析
动态规划是一种用于解决最优化问题的算法技术,它通过将复杂的问题分解为更简单的子问题,并利用这些子问题的解来构建原始问题的解。动态规划特别适用于那些拥有最优子结构和重叠子问题特性的问题。所谓最优子结构是指一个问题的最优解可以通过其子问题的最优解组合而成;而重叠子问题则意味着在求解过程中会多次遇到相同的子问题。
2024-12-05 17:31:42
493
原创 供应链商业数据分析求职指南:技能点、工具包与业务模式全解析
综上所述,供应链商业数据分析是一项综合性极强的工作,既要求从业者具备扎实的技术功底,又要有敏锐的商业洞察力和良好的人际交往能力。准确的需求预测是供应链管理的核心之一。定期审查供应商的表现,如交货时间、质量、价格等,并根据这些信息做出改进决策或选择新的供应商,是维持良好供应链合作关系的前提条件。同时,基于数据分析得出的结论还可以为企业提供战略层面的支持,例如是否应该扩大与某家供应商的合作规模,或者寻找更具竞争力的新伙伴。在面对复杂的供应链挑战时,能够提出创新性的解决方案,并通过严格的验证确保方案的有效性。
2024-12-05 15:58:49
818
原创 自动驾驶技术的深度剖析:从关键技术到发展路线的全面解读
自动驾驶车辆是指能够在没有人类驾驶员干预的情况下自主完成行驶任务的交通工具。这类系统通常由几个核心组件构成:传感器用于收集外部环境信息;数据处理单元负责分析这些信息并作出判断;决策制定模块则根据分析结果生成具体的驾驶指令;最后通过执行机构如转向、加速和制动系统来实现物理动作。
2024-12-05 15:46:14
1493
原创 自动驾驶技术综述与开源资源汇总
自动驾驶系统主要由三个关键部分构成:环境感知、决策规划以及运动控制。其中,环境感知负责通过各种传感器(如摄像头、激光雷达等)获取车辆周围的环境信息;决策规划则类似于人类驾驶员的角色,它需要解决的核心问题是“我在哪里?我要去哪里?我应该怎么走?而运动控制则是指如何根据决策结果来调整车辆的速度和方向,确保安全有效地到达目的地。
2024-12-05 15:41:17
534
原创 探索图像深度学习的多元应用,掌握最新技术趋势和开源资源
图像深度学习模型的应用场景及其对应的GitHub开源项目与前沿算法随着计算机视觉技术的发展,图像处理领域的深度学习模型正在变得越来越复杂和高效。这些模型不仅在学术界取得了显著的研究成果,在工业界也得到了广泛的应用。下面我们将探讨几种主要的图像处理任务,并为每种任务匹配相应的GitHub开源项目及前沿算法。1. 人脸识别GitHub 项目: 虽然没有直接提到FaceNet的具体实例,但我们可以参考类似的高质量人脸识别库,如davidsandberg/facenet,它实现了高效的面部特征提取。此项目支持
2024-12-05 14:43:47
876
原创 数据处理革命:图像、文本、表格与时序数据的开源项目代码全解析
同时,对于中文NLP任务而言,JioNLP这样的工具包同样不可或缺,因为它集成了许多实用的功能,帮助开发者轻松应对复杂的预处理需求。近年来,得益于深度学习技术的进步,特别是在卷积神经网络(CNN)方面的突破,使得机器能够在诸如物体识别、场景理解等方面达到甚至超越人类水平的表现。该项目不仅提供了高效的训练速度,而且在多个基准测试上取得了优异的成绩,证明了其强大的性能。值得注意的是,在大语言模型(LLMs)兴起之后,文本挖掘迎来了新的机遇——即利用LLMs的强大能力来进行更深层次的理解和生成。
2024-12-05 11:37:51
462
原创 数据不平衡情况下的建模处理方式与开源项目代码
在机器学习和深度学习中,数据不平衡是一个常见的问题,它指的是不同类别或事件发生的频率差异很大。这可能导致模型偏向于多数类(即频繁出现的类别),从而忽视少数类(即不常出现的类别)。对于图像、文本、表格以及时序数据,数据不平衡问题的处理方法各有特点。下面将详细介绍针对不同类型的数据,当遇到数据不平衡的情况时,可以采取哪些建模策略,并给出相应的开源项目代码。以上是针对不同类型数据在面对数据不平衡问题时的一些常见解决方案及其对应的开源项目代码片段。希望这些信息能帮助您更好地处理数据不平衡的问题。
2024-12-05 11:31:24
416
原创 ubuntu备份所有的.ipynb文件
为了创建一个包含当前日期的文件夹来进行备份,可以在脚本中使用date命令来获取当前日期,并将这个日期信息整合到你的备份目录路径中。下面是修改后的脚本,它会在每次执行时创建一个以当前日期命名的新文件夹用于存放备份文件。
2024-12-04 14:03:57
183
原创 OOTD与IDM-VTON:虚拟换衣技术的开源项目及对比分析
OOTDiffusion是一个由Xu Yuhao等人开发的用于虚拟试穿的开源项目。该项目利用了预训练的潜在扩散模型的力量,通过一个名为outfitting UNet的网络学习服装细节特征,并在扩散模型去噪过程中将其与目标人体融合。OOTDiffusion支持半身和全身模型,可以在VITON-HD和Dress Code数据集上训练,分别对应上半身和全身服装的试穿。
2024-12-02 16:24:47
641
原创 C、C++ 与 C# 的区别及应用场景
同时,随着技术的不断进步,这三种语言也在不断地演进,以适应日益增长的多样化需求。这些技术不仅推动了新的应用和服务的发展,也对软件开发提出了更高的要求,比如性能优化、安全性增强、跨平台兼容性等。C、C++ 和 C# 是三种广泛使用的编程语言,它们各自具有独特的特点和适用领域。本文将基于当前IT行业的发展趋势,探讨这三种语言之间的主要差异,以及它们各自的优缺点和应用场景。C++不仅保留了C语言的所有特性,还增加了类、继承、多态等面向对象的概念,并引入了模板、异常处理等功能。
2024-12-02 16:11:04
760
原创 HTTPS证书申请、Nginx配置及自动续期操作指南
HTTPS协议通过SSL/TLS加密技术来保护数据传输过程中的安全,而这一过程离不开SSL证书的使用。本文将详细介绍如何申请免费的HTTPS证书,并将其配置到Nginx服务器上,以及如何设置证书自动续期以确保长期有效。为了简化流程并保证成本效益,这里推荐使用Let’s Encrypt提供的免费证书。Let’s Encrypt是一个非盈利组织,旨在为全球网站提供免费的SSL/TLS证书。由于Let’s Encrypt颁发的证书有效期只有90天,因此需要定期进行续期。假设你已经安装并运行了一个Nginx实例。
2024-12-02 11:41:21
937
原创 IoTDB SQL 编写方法及样例
它起源于清华大学大数据系统软件团队的研究工作,并于2018年捐赠给Apache软件基金会,经过为期一年十个月的孵化期,在2020年正式成为Apache顶级项目。作为首个由中国高校发起并成功孵化的Apache顶级项目,IoTDB不仅代表了中国在开源领域的技术贡献,也展示了国际开源社区对于中国技术创新的认可。对于更复杂的查询需求,IoTDB 提供了丰富的函数和运算符支持,可以在官方文档中找到更多详细信息。此外,IoTDB还具备强大的数据同步能力,支持端云一体化解决方案,使得数据能够在边缘端和云端之间高效流动。
2024-12-02 10:16:54
707
原创 FilterNet:利用频率滤波器进行时间序列预测
该论文提出了一种新的时间序列预测框架——FilterNet,通过引入频率滤波器来增强模型的时间序列结构提取能力,并在多个基准数据集上取得了优异的表现。研究角度新颖:作者从信号处理的角度出发,将频率滤波器应用于时间序列预测中,为时间序列预测领域提供了新的思路。方法创新:提出了两种类型的频率滤波器,即平面形状滤波器和平面形状滤波器,用于不同条件下的信号过滤和时序建模,同时还具有与线性和注意力映射相似的效果。
2024-12-02 10:03:15
1172
原创 RAG技术深入探讨:架构、开源技术、发展路线与大模型
检索增强生成(Retrieval-Augmented Generation, RAG)是近年来在自然语言处理(NLP)领域兴起的一种创新技术,它通过结合信息检索和生成模型来提高文本生成的准确性和相关性。随着大型语言模型(LLMs)的广泛应用,RAG技术因其能够有效地解决知识更新、幻觉问题以及数据隐私保护等挑战而备受瞩目。本文将从RAG技术探讨、开源技术架构、技术路线以及与大模型的合作方式等方面出发,为读者提供一个全面的理解。
2024-11-29 17:30:24
685
原创 大模型文本生成技术的深度解析
例如,Switch Transformer是Google提出的一种基于MoE的模型,它通过动态路由机制实现了高效的计算。近期的研究还提出了诸如“模型算术”这样的方法,通过组合多个预训练模型实现更精细的控制。例如,通过调整模型的温度参数,可以改变生成文本的多样性和创造性。例如,ZeRO(Zero Redundancy Optimizer)是一种新的优化器,可以显著减少内存占用,提高训练效率。对话系统是大模型的重要应用之一。例如,微软的小冰、阿里巴巴的通义千问等聊天机器人,能够与用户进行自然流畅的对话。
2024-11-29 17:26:01
1144
原创 Pandas 常用函数及应用场景详解
以上介绍了 Pandas 中的 30 个常用函数及其应用场景。这些函数涵盖了数据加载、清洗、转换、分析等多个方面,是进行数据科学和数据分析工作的重要工具。通过熟练掌握这些函数,你可以更高效地处理和分析数据。希望本文对你有所帮助!
2024-11-15 14:31:12
752
原创 数据透视表:Excel 和 Pandas 的用法及案例
用户界面Excel:图形用户界面,适合非编程用户。Pandas:基于代码,适合编程用户,灵活性更高。数据处理能力Excel:适合中小型数据集。Pandas:适合大型数据集,性能更好。可重复性和自动化Excel:手动操作,难以自动化。Pandas:代码可重复使用,容易自动化。
2024-11-15 14:26:35
845
原创 Timer 使用教程
通过以上步骤,你可以成功地使用清华大学 Timer 模型进行时间序列数据的训练和预测。Timer 模型的强大之处在于其能够处理大规模时间序列数据,并且在少样本学习任务中表现出色。希望这篇教程对你有所帮助,祝你在时间序列分析领域取得更大的进展!如果你有任何问题或需要进一步的帮助,请随时联系清华大学 Timer 模型的开发团队。他们通常会在 GitHub 仓库的 Issues 页面上积极回应社区的问题和建议。
2024-11-14 10:34:37
849
5
原创 时序大模型:技术需求、现有成果及主流模型、模型架构、数据处理方式、优势、缺点及未来展望
时序大模型作为时间序列数据分析的重要工具,正以其独特的优势推动着相关领域的创新与发展。尽管存在一定的局限性,但随着技术的不断成熟和完善,这些问题将逐渐得到解决,时序大模型的应用前景将更加广阔。通过严格的数据处理和优化算法,时序大模型能够更好地服务于金融、医疗、工业、能源等多个领域,为社会经济发展贡献力量。时序大模型的性能高度依赖于数据的质量和完整性。为了确保模型的预测和分析结果准确可靠,需要采取一系列措施来保证数据的完整性和准确性。
2024-11-14 10:21:24
1496
原创 大语言模型的技术路线
大语言模型的技术路线涵盖了从数据收集到模型部署的各个环节。通过大规模的预训练和任务特定的微调,这些模型在多种自然语言处理任务上取得了显著的性能提升。未来,随着硬件技术的发展和算法的不断优化,大语言模型将在更多领域发挥重要作用。希望本文能为从事大语言模型研究和开发的读者提供有价值的参考。这些模型通过大规模的预训练和微调,能够在多种任务上表现出卓越的性能。本文将详细介绍大语言模型的技术路线,涵盖从数据收集到模型部署的各个阶段。
2024-11-14 10:13:57
589
原创 Linux运维常用的命令列表
按照名称、类型、大小、时间等条件在文件系统中搜索文件或目录,进行批量管理或定位特定文件。:创建空文件或更新文件的访问/修改时间,常用于初始化日志文件或触发依赖于文件时间的操作。:查看当前运行的进程状态、PID、父进程ID、CPU/内存使用等,或按名称搜索进程。:流式文本编辑器,对文件或命令输出进行行级的搜索、替换、删除等操作,无需打开文件。:查看当前目录下文件和子目录的基本信息,如名称、大小、权限、修改时间等。:设置文件或目录的权限模式,控制用户对资源的读、写、执行权限。
2024-03-27 16:56:45
821
原创 解决数据噪声与不确定性
综上所述,解决数据噪声与不确定性涉及数据预处理、概率预测框架、集成学习、深度学习中的不确定性处理、专门的时间序列分析技术以及严谨的模型评估与调整等多个层面。选择合适的方法应依据具体问题的性质、数据特点以及可用计算资源等因素综合考量。解决数据噪声与不确定性是数据分析和预测建模中的关键挑战。
2024-03-27 16:47:59
530
原创 实用数控机床故障诊断与维修技术:深度解析与实战案例
首章明确了数控机床维修的基本要求,强调了维修人员应具备的综合素质:广博的知识面(涵盖机械、电气、液压、气动等多领域)、善于思考与分析问题、重视经验总结与积累、具备持续学习能力、精通外语以应对原文资料、熟练操作机床与使用维修仪器,以及具备扎实的动手能力。全书共分为十章,涵盖了数控机床维修基础、典型数控系统及驱动故障诊断与维修、伺服进给系统故障维修、主轴系统故障诊断与维修、机械部件维修与调整、辅助控制装置维修等多方面内容,辅以丰富的实例解析,构建起系统的故障诊断与维修体系。故障诊断方法与维修技术。
2024-03-27 16:38:08
824
原创 传统时序预测工作中,可能会遭遇一系列复杂且具有挑战性的疑难杂症
综上所述,在处理传统时序预测任务时,需要面对非线性动态复杂性、多变量依赖、数据不完整性、非平稳性、模型泛化与过拟合、解释性与可信任度、实时预测需求以及数据噪声与不确定性等诸多疑难杂症。提高模型的可解释性,尤其是对于时序预测中的关键驱动因素和转折点的解读,有助于提升用户对模型的信任并支持决策。这些极端情况对模型训练和预测性能影响较大,可能导致模型过度拟合异常点或对正常数据的预测精度降低,需要有效的方法进行识别、处理或鲁棒建模。在传统时序预测工作中,可能会遭遇一系列复杂且具有挑战性的疑难杂症。
2024-03-27 16:31:39
842
1
原创 每次打开pycharm,右下角的一直 updating indecs(已解决)
其它使用过但不管用的方法:第一种方法:点击左上角菜单File —> Invalidate Caches / Restart —> Invalidate and Restart等待自动重启pycharm之后等一会就可以了第二种方法(解决我的问题的方法):1.点击File然后点击settings2.点击右侧下拉菜单,点击Show All3.选中一个(每一个都要重复3,4这两...
2020-02-22 12:02:32
7105
2
原创 Linux查询正在运行的Python进程
查询Python2进程ps -ef|grep python2查询Python3进程ps -ef|grep python3查询Java进程ps -ef|grep javaps -ef|grep * 解释ps命令将某个进程显示出来grep命令是查找中间的|是管道命令 是指ps命令与grep同时执行ps是Linux下最常用的也是非常强大的进程查看命令grep命令是查找...
2019-11-11 16:02:24
16086
1
转载 iptables端口中继转发(记)
作者原文地址:iptables自动配置作者原文地址安装地址:wget -N --no-check-certificate https://raw.githubusercontent.com/ToyoDAdoubiBackup/doubi/master/iptables-pf.sh && chmod +x iptables-pf.sh && bash iptable...
2019-11-10 21:31:09
689
原创 Chromedriver各个版本浏览器驱动下载地址
来自:淘宝源2.0/ 2013-09-25T22:57:39.349Z2.1/ 2013-09-25T22:57:49.481Z2.10/2014-05-01T20:46:22.843Z -2.11/2014-10-08T01:17:17.918Z -2.12/2014-10-27T09:27:24.626Z -2.13/2014-12-10T13:17:59.776Z -2...
2019-11-10 15:57:28
2291
原创 分类算法之k-近邻
分类算法之k-近邻k-近邻算法采用测量不同特征值之间的距离来进行分类优点:精度高、对异常值不敏感、无数据输入假定缺点:计算复杂度高、空间复杂度高使用数据范围:数值型和标称型一个例子弄懂k-近邻电影可以按照题材分类,每个题材又是如何定义的呢?那么假如两种类型的电影,动作片和爱情片。动作片有哪些公共的特征?那么爱情片又存在哪些明显的差别呢?我们发现动作片中打斗镜头的次数较多,而爱情片中...
2019-11-10 15:46:25
629
原创 Python进程、线程、协程对比
进程、线程、协程对比请仔细理解如下的通俗描述有一个老板想要开个工厂进行生产某件商品(例如剪子)他需要花一些财力物力制作一条生产线,这个生产线上有很多的器件以及材料这些所有的为了能够生产剪子而准备的资源称之为:进程只有生产线是不能够进行生产的,所以老板的找个工人来进行生产,这个工人能够利用这些材料最终一步步的将剪子做出来,这个来做事情的工人称之为:线程这个老板为了提高生产率,想到3种办...
2019-11-10 15:28:58
362
原创 Python生成器
生成器1. 生成器利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成。但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据。为了达到记录当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator)。生成器是一类特殊的迭代器。2. 创建生成器方法1要创建一个生成器,有...
2019-11-10 15:19:30
524
原创 Python迭代器
迭代器迭代是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。1. 可迭代对象对list、tuple、str等类型的数据使用for...in...的循环语法从其中依次拿到数据进行使用,把这样的过程称为遍历,也叫迭代。但是,是否所有的数据类型都可以放到for...in...的语句中,然后让f...
2019-11-10 15:00:32
444
原创 Python装饰器
装饰器装饰器是程序开发中经常会用到的一个功能,用好了装饰器,开发效率如虎添翼,所以这也是Python面试中必问的问题,但对于好多初次接触这个知识的人来讲,这个功能有点绕,自学时直接绕过去了,然后面试问到了就挂了,因为装饰器是程序开发的基础知识,这个都不会,别跟人家说你会Python, 看了下面的文章,保证你学会装饰器。1、先明白这段代码#### 第一波 ####def foo(): ...
2019-11-10 14:44:23
1547
3
原创 Python闭包
闭包1. 函数引用def test1(): print("--- in test1 func----")# 调用函数test1()# 引用函数ret = test1print(id(ret))print(id(test1))#通过引用调用函数ret()运行结果:--- in test1 func----1402125711490401402125711...
2019-11-10 14:22:10
313
原创 Python多继承以及MRO顺序
多继承以及MRO顺序1. 单独调用父类的方法# coding=utf-8print("******多继承使用类名.__init__ 发生的状态******")class Parent(object): def __init__(self, name): print('parent的init开始被调用') self.name = name ...
2019-11-10 14:13:24
367
原创 MySQL查询
查询创建数据库、数据表-- 创建数据库create database python_test_1 charset=utf8;-- 使用数据库use python_test_1;-- students表create table students( id int unsigned primary key auto_increment not null, name va...
2019-11-10 13:57:33
1246
1
原创 Linux用户权限相关命令
用户权限相关命令目标用户 和 权限 的基本概念用户管理 终端命令组管理 终端命令修改权限 终端命令1. 用户 和 权限 的基本概念1.1 基本概念用户 是 Linux 系统工作中重要的一环,用户管理包括 用户 与 组 管理在 Linux系统中,不论是由本机或是远程登录系统,每个系统都必须拥有一个账号,并且对于不同的系统资源拥有不同的使用权限在 ...
2019-11-10 10:53:29
491
原创 Linux文件和目录常用命令
文件和目录常用命令目标查看目录内容- ls切换目录- cd创建和删除操作- touch- rm- mkdir拷贝和移动文件- cp- mv查看文件内容- cat- more- grep其他- echo- 重定向 \> 和 \>\>- 管道 \...
2019-11-10 10:41:29
412
原创 Linux 终端命令格式
Linux 终端命令格式目标了解终端命令格式知道如何查阅终端命令帮助信息1. 终端命令格式command [-options] [parameter]说明:command:命令名,相应功能的英文单词或单词的缩写[-options]:选项,可用来对命令进行控制,也可以省略parameter:传给命令的参数,可以是 零个、一个 或者 多个[] 代表可选...
2019-11-09 22:09:54
375
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人