回文字符串(回文子串的个数、最长回文子串、最长不连续的回文子串)的解法

一看到回文字符串,脑海里立马要想到前面两个最常用的结题思路:

  • 1.动态规划
  • 2.中心扩散法
  • 3.还有著名的马拉车算法

1.回文子串的个数

public class Solution14_回文子串 {
    /**
     * 方法一:中心扩散法
     */
    static int ans = 0;
 
    public static void main(String[] args) throws IOException {
        BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
        String s = bf.readLine();
        for (int i = 0; i < s.length(); i++) {
            //考虑两种情况:aba 和 abba
            centerSpread(s, i, i);
            centerSpread(s, i, i + 1);
        }
        System.out.println(ans);
    }
 
    //判断回文串的中心扩散法
    private static void centerSpread(String s, int left, int right) {
        while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
            left--;
            right++;
            ans++;
        }
    }
 
    //方法二:动态规划
    private static int dp(String s) {
        int n = s.length(), ans = 0;
        boolean[][] dp = new boolean[n][n];
        for (int i = n - 1; i >= 0; i--) {
            for (int j = i; j < n; j++) {
                dp[i][j] = (s.charAt(i) == s.charAt(j)) && (j - i <= 2 || dp[i + 1][j - 1]);
                if (dp[i][j]) ans++;
            }
        }
        return ans;
    }
}

2.最长回文子串

class Qusetion2 {
 
    //1.动态规划
    public static String longestPalindrome(String s) {
        int n = s.length();
        if (n < 2) return s;
        int maxLen = 1;
        String res = s.substring(0, 1);
        boolean[][] dp = new boolean[n][n];
        //左边界一定小于右边界,因此从右边界开始
        for (int r = 1; r < n; r++) { //表示右边界
            for (int l = 0; l < r; l++) { //表示左边界
                // 区间应该慢慢放大
                // 状态转移方程:如果头尾字符相等并且中间也是回文
                // 在头尾字符相等的前提下,如果收缩以后不构成区间(最多只有 1 个元素),直接返回 True 即可
                // 否则要继续看收缩以后的区间的回文性
                if (s.charAt(l) == s.charAt(r) && ((r - l) <= 2 || dp[l + 1][r - 1])) {
                    dp[l][r] = true;
                    if (r - l + 1 > maxLen) {
                        maxLen = r - l + 1;
                        res = s.substring(l, r + 1);
                    }
                }
            }
        }
        return res;
    }
 
    //2.中心扩展法
    private int start, maxLen;
 
    public String longestPalindrome1(String s) {
        if (s == null || s.length() < 2) return s;
        for (int i = 0; i < s.length(); i++) {
            //考虑中心扩散的两种情况1:aba  和 2: bb
            findMaxPalindrome(s, i, i);
            findMaxPalindrome(s, i, i + 1);
        }
        return s.substring(start, start + maxLen);
    }
 
    private void findMaxPalindrome(String s, int i, int j) {
        while (i >= 0 && j < s.length() && s.charAt(i) == s.charAt(j)) {
            i--;//向左延伸
            j++;//向右延伸
        }
        //记录每个起始点扩展的回文串的最大长度
        if (maxLen < j - i - 1) {
            start = i + 1;
            maxLen = j - i - 1;
        }
    }
}

3.最长不连续回文子串

动态规划解法:dp[l][r]表示从l到r最长回文子串的长度,如果在char[l] == char[r] 那么dp[l + 1][r - 1] + 2 否则最大回文子串要么不包括char[l],要么不包括char[r] ,即在dp[l + 1][r]和dp[l][r - 1]中取最大值

public int longestPalindrome(String s) {
    int n = s.length();
    int[][] dp = new int[n][n];//dp[l][r]表示l-r中的最长回文串
    for (int r = 0; r < n; r++) {
        dp[r][r] = 1;
        for (int l = r - 1; l >= 0; l--) {
            if (s.charAt(l) == s.charAt(r)) {
                dp[l][r] = dp[l + 1][r - 1] + 2;
            } else {
                dp[l][r] = Math.max(dp[l + 1][r], dp[l][r - 1]);
            }
        }
    }
    return dp[0][n - 1];
}

 

发布了11 篇原创文章 · 获赞 1 · 访问量 3086
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览