判断一颗二叉树是否是平衡二叉树

判断一颗二叉树是否是平衡二叉树
/
解题思路:
首先要保证当前树的左右子树高度差不大于1,并且子树本身也是平衡树。*
/
int maxDepth(struct TreeNode
root){
return root ? 1 + fmax(maxDepth(root->left) , maxDepth(root->right)) : 0;
}

bool isBalanced(struct TreeNode* root){
if(root == NULL)
return true;
int left = maxDepth(root->left);
int right = maxDepth(root->right);
return abs(left - right) < 2
&& isBalanced(root->left)
&& isBalanced(root->right);
}

对于给定的两个序列,我们可以通过构建二叉搜索树来判断它们是否可以组成同一颗二叉搜索树。 首先,我们需要明确二叉搜索树的定义:对于任意节点,其左子树的所有节点值都小于它,右子树的所有节点值都大于它。 我们可以按照以下步骤来构建二叉搜索树: 1. 创建一个空的二叉搜索树。 2. 遍历第一个序列中的所有元素,依次将它们插入到二叉搜索树中。 3. 遍历第二个序列中的所有元素,依次在二叉搜索树中查找是否存在该元素。如果找到了该元素,则继续遍历下一个元素;如果没有找到该元素,则说明两个序列无法组成同一棵二叉搜索树。 如果两个序列可以组成同一棵二叉搜索树,那么我们可以进一步判断是否是平衡二叉树平衡二叉树是指对于任意节点,其左子树和右子树的高度差不超过1。我们可以使用递归的方式来判断一棵二叉树是否是平衡二叉树: 1. 如果当前节点为空,则返回 True。 2. 计算当前节点的左子树高度和右子树高度的差值。如果差值大于1,则返回 False。 3. 分别递归判断当前节点的左子树和右子树是否是平衡二叉树。如果左子树和右子树都是平衡二叉树,则返回 True;否则,返回 False。 综上所述,我们可以通过构建二叉搜索树并判断是否是平衡二叉树判断给定的两个序列是否可以组成同一颗平衡二叉树
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值