自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(38)
  • 资源 (29)
  • 收藏
  • 关注

原创 sglang0.4.3参数说明

flashinfer_mla_disable_ragged: 是否禁用FlashInfer MLA中的ragged,默认为False。triton_attention_reduce_in_fp32: 是否在FP32中减少Triton注意力,默认为False。debug_tensor_dump_output_folder: 调试张量转储输出文件夹,未指定时为None。debug_tensor_dump_input_file: 调试张量转储输入文件,未指定时为None。这涉及到安全性和潜在风险。

2025-05-31 15:28:02 1008

原创 cuda_fp8.h错误

cuda工具版本太低。通过nvcc --version查看。小于11.8,会报fp8错误,因此是。下载高版本,本次下载了。

2025-05-31 15:21:30 595

原创 could not select device driver ““ with capabilities: [[gpu]]

https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list:根据之前获取的系统信息构造出对应的 APT 源地址。| sudo tee /etc/apt/sources.list.d/nvidia-docker.list:将下载的内容写入一个新的 APT 源配置文件中。. /etc/os-release:加载 /etc/os-release 文件中的环境变量,这些变量描述了你当前使用的 Linux 发行版信息。

2025-05-31 14:55:01 740

原创 n8n工作流自动化平台:生成图文并茂的分析报告之Merge节点详细说明

All Possible Combinations 是生成两个数据集中所有记录之间所有可能配对的方式。这种方式也被称为“交叉连接”或“笛卡尔积”。

2025-05-05 16:30:32 1050

原创 cline或业务系统集成n8n的工作流(MCP Server Trigger、Call n8n Workflow Tool node)

Call n8n Workflow Tool节点是一个工具,它允许代理运行另一个n8n工作流并获取其输出数据。在此页面上,您将找到“调用n8n工作流工具”节点的节点参数,以及指向更多资源的链接。节点参数#输入自定义代码和描述。这告诉代理何时使用此工具。例如:调用此工具以获取随机颜色。输入应该是一个字符串,其中包含要排除的逗号分隔的颜色名称。告诉n8n要调用哪个工作流。您可以选择:数据库,从列表中选择工作流或输入工作流ID。在下面定义并复制一个完整的JSON工作流。

2025-05-04 16:34:20 841

原创 利用n8n、DeepSeek、AI Agent、子工作流生成统计图

1.通过{{ $json.chatInput }} 接收When chat message received节点的输入;注:红框内容,需要和2.4的Workflow Inputs 对应。注:注意红框里面的内容,特别是 Description的内容。注:连上互联网的deepseek模型,这里就不详细说明。利用大模型,提取用户输入内容中的开始、结束日期。2.8postgresql节点。两种方式接收code传入的参数。2.增加合适的系统提示词。》,我在这就不详细描述。注:注意红色框内容。

2025-05-04 10:28:52 456

原创 n8n工作流自动化平台的实操:生成统计图的两种方式

注:生成单曲线,单柱状图,通过 QuickChart节点没有问题,如果有上传多条曲线,则无法实现,只能通过https://quickchart.io/chart?width=650&height=450&c={{ $json.data }}方式实现。注:通过https://quickchart.io/chart?width=650&height=450&c={{ $json.data }}实现图片的生成,图中红框部分。注:将json对象转换成字符串,主要图中的红框。注:将明细数据进行汇总。

2025-05-04 09:29:01 662

原创 n8n工作流自动化平台的实操:利用本地嵌入模型,完成文件内容的向量化及入库

牵涉节点:FTP、Code、Milvus Vector Store、Embeddings OpenAI、Default Data Loader、Recursive Character Text Splitter。

2025-05-04 08:40:41 832

原创 n8n工作流自动化平台的实操:解决中文乱码

本文解决中文乱码问题

2025-05-03 22:14:13 616

原创 n8n工作流自动化平台的实操:Cannot find module ‘iconv-lite‘

n8n是一款功能强大的开源工作流自动化工具,旨在帮助用户通过可视化方式连接不同应用和服务,实现业务流程的自动化。本文章解决Cannot find module 'iconv-lite' [line 2]错误;

2025-05-03 21:57:36 871

原创 n8n工作流自动化平台的实操:本地化高级部署

n8n是一款功能强大的开源工作流自动化工具,旨在帮助用户通过可视化方式连接不同应用和服务,实现业务流程的自动化。本文将全面介绍n8n的本地化高级安装部署 。

2025-05-03 21:20:12 1640

原创 通过LLaMA-Factory-0.9.1对231文章进行训练,观察训练损失率与收敛性的关系

根据上面的表格,第二次训练结果比较合适。损失率比较低且模型没有过早收敛。批处理大小:2(批处理约大约占内存,容易导致显存不够,不要超过4)2张A6000GPU。

2024-12-19 13:53:00 606

原创 将vllm0.6.4发布多个lora模型的命令封装成shell脚本

为了简化Lora模型的发布流程并提高操作的便捷性与可记录性,我决定将所有相关的命令封装进一个Shell脚本(.sh文件)中。这样一来,每次需要发布Lora模型时,只需执行这个Shell脚本即可,大大减少了手动输入命令的工作量,并确保了每一步骤的一致性和准确性。

2024-12-19 12:16:47 479

原创 vllm0.5.0增加/api/paas/v4/chat/completions接口,供langchain4j-zhipu-ai工程调用

路径:minconda3/envs/python31013new/lib/python3.10/site-packages/vllm/entrypoints/openai。vllm发布的rest api接口中,包含/api/paas/v4/chat/completions接口。两张A6000GPU卡。

2024-12-18 17:26:44 732

原创 将vllm0.5.0发布多个lora模型的命令封装到Python代码中

路径:minconda3/envs/python31013new/lib/python3.10/site-packages/vllm/entrypoints/openai/cli_args.py。2张A6000的GPU。

2024-12-18 16:28:53 538

原创 vllm0.5.0发布lora模型,报ValueError: max_num_batched_tokens must be <= 65528 when LoRA is enabled.

默认是0.9.占用显存的比例,请根据你的显卡显存大小设置合适的值,例如,如果你的显卡有80G,您只想使用24G,请按照24/80=0.3设置。# 默认是0.9.占用显存的比例,请根据你的显卡显存大小设置合适的值,例如,如果你的显卡有80G,您只想使用24G,请按照24/80=0.3设置。"--block-size", "32" , # 增加此参数并设置合适的批量大小。"--block-size", "32" , # 增加此参数并设置合适的批量大小。# 的连续块的令牌块大小“令牌。

2024-12-18 16:16:22 1117

原创 LLaMA-Factory-0.9.1执行python src/webui.py会报错且会自动退出

代理服务器:http://10.*.*.*:8118解决上互联网。再执行 python src/webui.py就没有问题。

2024-12-18 15:21:58 1145

原创 LLaMAFactory0.9.1评估预测报TypeError: GenerationMixin._extract_past_from_model_output() got an unexpected

大模型的transformers版本太低导致,通过config.json文件发现,transformers是4.40.2版本,升级到4.44.0就可以。你会发现modeling_chatglm.py的内容有变化,新版本没有standardize_cache_format参数。通过LLaMAFactory进行Evaluate& Predict时,报错。下载最新的配置文件就可,包括如下7个文件。大模型:GLM-4-9B-chat。

2024-12-18 14:17:07 1048

原创 vllm0.5.0升级到vllm0.6.4报错

考虑vllm0.6.4,在性能提升、模型支持和多模态处理等方面都取得了重要的进展。在性能方面,新版本引入了多步调度 (Multistep scheduling) 和异步输出处理 (Asynchronous output processing),优化了 GPU 的利用率并提高了处理效率,从而提高了整体的吞吐量。

2024-12-09 19:52:53 1295

原创 vllm0.5.0的api_server参数说明

API 中使用的模型名称。--max-context-len-to-capture (已废弃): 替换为 --max-seq-len-to-capture,表示由 CUDA 图覆盖的最大上下文长度或序列长度。--ngram-prompt-lookup-max, --ngram-prompt-lookup-min: 在推测解码中 ngram 提示查找窗口的最大和最小尺寸。--worker-use-ray: 已废弃,建议使用 --distributed-executor-backend=ray。

2024-12-08 15:44:00 2815

原创 vllm0.5.0的v1/completions各参数说明

model指定使用的语言模型名称或标识符。prompt提供给模型的输入文本,是字符串或字符串数组。stream: 是否流式返回生成的结果。: 流式响应的额外选项。: 控制输出随机性的参数,值越低,输出越确定。top_p: 核采样,只从累积概率达到此值的最小集合中选择下一个词。: 是否使用束搜索算法进行解码。top_k: 只考虑最高概率的k个词汇。user: 用户ID或其他标识符,可用于跟踪或限制API使用。best_of: 从多个候选输出中选择最佳的一个。

2024-12-08 15:23:03 3708

原创 国产GPU中,VLLM0.5.0发布Qwen2.5-14B-Instruct-GPTQ-Int8模型,请求返回结果乱码

国产GPU: DCU Z100推理框架: vllm0.5.0docker容器化部署运行如下代码:报:1.重新拉取docker容器2.运行容器3.进入容器 4.运行5.调用

2024-12-07 12:20:05 1693

原创 1.文本方块方法(Spacy Text Splitter 方法)Can‘t find model ‘zh_core_web_sm‘

Spacy是一个用于执行自然语言处理(NLP)各种任务的库。它具有文本拆分器功能,能够在进行文本分割的同时,保留分割结果的上下文信息。

2024-12-07 11:25:19 630

原创 4.stable-diffusion-webui1.10.0--图像修复(adetailer)插件

ADetailer是Stable Diffusion WebUI的一个插件,它通过深度学习模型智能检测图像中的人脸、手部及身体等关键部位,并自动进行重绘修复,使得生成的图像更加自然、符合预期。ADetailer插件主要应用于图像的细节增强、降噪和修复,特别适用于面部瑕疵如痘痘、皱纹、色斑等的修复。它提供了高效的处理速度和精细的调整能力,因此在人脸修复方面受到用户的青睐。智能检测:ADetailer能够智能识别图像中的人脸、手部等关键部位,无需手动绘制蒙版。

2024-10-11 22:50:52 1442

原创 4.stable-diffusion-webui1.10.0安装动画视频(AnimateDiff)插件

AnimateDiff插件以“效果丝滑、稳定、无闪烁”等特性,成为目前Stable diffusion中效果最好的生成动画视频插件之一。AnimateDiff,它的全称是Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning。目前主要有3个不同的版本,Stable Diffusion WebUI版本,ComfyUI版本和一个纯代码版本。

2024-10-10 18:48:51 2304

原创 3.stable-diffusion1.10.0精准控制图-ControlNet插件的安装

注:从网址安装可以保证插件的更新能在 WebUI 中自动显示,如果是下载压缩包文件放进根目录,就无法自动更新。下面执行网址安装。

2024-10-10 11:16:18 908

原创 调用sdapi/v1/txt2img接口,报错“Couldn‘t load custom C++ ops”

遇到“Couldn't load custom C++ ops”这样的错误,通常意味着 PyTorch 和 torchvision 之间的版本不兼容。

2024-10-09 14:57:35 589

原创 部署cogview图片生成模型

此外,通过对扩散模型的逐步蒸馏,CogView3 能够在推理时间仅为 SDXL 1/10 的情况下,生成可比的结果。由于我们在`CogVideoX`中上传过 `safetensors` 格式的T5模型,一个简单的办法是从`CogVideX-2B`模型中克隆模型,然后将其拷贝到对应的文件夹中。克隆 T5 模型,该模型不用做训练和微调,但是必须使用。# # 这个部分是给 CogView-3-Relay 模型使用的,需要将该参数设置为推理模型的输入文件夹,提示词建议与 base 模型生成图片时的提示词的一致。

2024-10-08 15:28:08 1560

原创 部署cogvideox视频生成模型

CogVideoX是智谱AI开源的一款视频生成模型,其核心在于3D变分自编码器和3D旋转位置编码(3D RoPE)技术。这些技术使得CogVideoX能够在保持视频帧间连贯性的同时,极大地降低计算资源需求,并生成流畅、连贯的视频序列。此外,CogVideoX还具备强大的文本理解能力,能够处理超长且复杂的文本提示,生成与用户输入高度相关的视频内容.

2024-10-08 12:07:08 1677

原创 Centos7.9上离线安装milvus2.2.9

使用docker-compose安装完成milvus后自动启动了,可以使用命令docker ps或者docker-compose ps命令查看容器运行状态。使用浏览器访问连接地址http://ip:9091/api/v1/health,返回{“status”:“ok”}说明milvus数据库服务器运行正常。在下载存储docker-compose.yml文件的目录下执行docker-compose up -d 命令开始安装milvus容器。注:因为提前加载了3个镜像文件,因此不会再下载,实现离线安装目的。

2024-10-06 16:59:00 1183

原创 离线汉化stable-diffusion-webui界面

1.从Stable-diffusion-webui 的汉化扩展下载汉化语言包.2.进入下载好的文件夹,把"localizations"文件夹内的"chinese-and-english-0313.json"和"chinese-only-0313.json"复制到"stable-diffusion-webui\localizations"目录下.3点击"Settings",左侧点击"User interface"界面。4.在右边界面最上方的"Localization (req

2024-10-06 09:50:27 560

原创 OSError: Can‘t load tokenizer for ‘openai/clip-vit-large-patch14‘

运行:python launch.py --use-cpu all --skip-torch-cuda-test --theme dark --precision full --no-half --listen --server-name 0.0.0.0。1.进入解压后的 stable-diffusion-webui目录,创建目录 openai。环境:centos7.9 、stable-diffusion-webui。3.在stable-diffusion-webui根目录下执行如下命令.

2024-10-06 08:44:15 1391

原创 释放centos7.9的缓存

通过free -g,发现内存太少,缓存占用太多。如下图:执行:命令的作用是清空Linux系统的文件系统缓存。具体来说,这个命令会将文件的内容设置为1,从而告诉内核释放部分缓存。

2024-10-03 18:03:12 1138

原创 “git“ clone --config core.filemode=false “https://github.com/AUTOMATIC1111/stable-diffusion-webui-as

致命错误:无法访问 'https://github.com/AUTOMATIC1111/stable-diffusion-webui-assets.git/':Error in the HTTP2 framing layer。正克隆到 '/home/third_party_app/llm/stable-diffusion-webui/repositories/stable-diffusion-webui-assets'...

2024-10-03 17:42:24 1385

原创 Centos7上安装更高版本的gcc及g++

注:编译源代码工程,会要求gcc的更高版本,而CentOS 7默认的软件源中没有提供这么新的版本,你可以通过以下方法来安装更新的GCC版本。c++: 错误:unrecognized command line option ‘-std=c++17’。注:发现没有SCL仓库。

2024-10-03 16:51:36 1460

原创 离线安装 docker 和 docker-compose

rm -rf docker/下载地址:cp docker-compose-darwin-x86_64 /usr/local/bin/docker-composedocker.service的内容如下:[Unit][Service][Install]docker -v。

2024-09-09 19:19:29 1545

原创 在麒麟操作系统中配置本地yum源

在麒麟操作系统中配置本地yum源

2024-08-04 15:02:37 4371

原创 基于国产DCU-Z100的GPU在公安网部署GLM-4-9B

在公安网的国产GPU上部署开源大模型

2024-08-04 14:44:05 1482 2

GIS空间分析导论

空间分析是GIS的主要特征,有无空间分析功能是GIS与其他系统相区别的标志

2008-03-26

空间分析建模

空间分析建模是指运用GIS空间分析建立数学模型的过程,其过程包括:明确问题、分解问题、组建模型、检验模型结果和应用分析结果

2008-03-26

空间数据的转换与处理

投影变换、数据格式转换、数据裁切、拼接等内容分别简单介绍

2008-03-26

ArcGISEngine 3D开发

ArcGISEngine 3D 3D控件

2008-04-08

ArcGIS二次开发编程实例

ArcGIS二次开发编程实例

2008-04-08

数据挖掘 weka 中文教程

WEKA的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),它的源代码可通过http://www.cs.waikato.ac.nz/ml/weka得到。同时weka也是新西兰的一种鸟名,而WEKA的主要开发者来自新西兰。 WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。 如果想自己实现数据挖掘算法的话,可以看一看weka的接口文档。在weka中集成自己的算法甚至借鉴它的方法自己实现可视化工具并不是件很困难的事情

2010-01-25

制作Docker安装程序V1.0.docx

spring boot +Docker的制作过程,包括Dockerfile文件的编写及执行文件的编写

2020-08-06

RTSP转HLSV1.0.pdf

服务端:windows 10+ffmpeg+nginx 前端设备:海康/大华球机、NVR设备

2021-03-20

交通地址库、道路路网台账管理、交通事故上图、交通多发点段分析、交通安全隐患闭环管理

交通事故分析预警系统主要包括:交通地址库管理、道路路网台账管理、交通事故上图、交通多发点段分析、交通安全隐患闭环管理。

2024-08-04

多维分析 ROLAP的概念

联机分析处理 (OLAP) 的概念最早是由关系数据库之父E.F.Codd于1993年提出的. OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果

2010-01-25

如何将Mondrian用于web项目

通过本教程,您将了解到什么是Mondiran,及如何将mondrian支持添加到您的Java Web项目中

2010-01-25

mondrian元数据和建模报告

mondrian元数据和建模报告 Mondrian ,2002年2月7日创建的开源项 目,一个用java编写的ROLAP Server

2010-01-25

MDX的基本语法及概念

MDX(multi-dimensional expressions多维表达式)是一种语法,支持多维对象与数据的定义和操作

2010-01-25

基于海康设备+srs搭建直播系统V1.0.pdf

服务端:centos7.0+srs 4.0 前端设备:海康/大华球机、NVR设备 注意:srs4.0之后的版本才支持gb28181

2021-03-20

mondrian的基本模式

一个mondriann模式文件定义了一个多维数据库. 它包含一个逻辑模型(logical model)、一组数据立方(consisting of cubes)、层次(hierarchies)、和成员(members), 并映射到物理模型上.

2010-01-25

基于srs+obs搭建直播系统V1.0.pdf

服务端:centos7.0+docker 18.09.9+srs 3.0 客户端:windows10+obs 25.0.8+笔记本摄像头

2021-03-16

arcims 9.3永久license

arcims 9.3永久license arcimsserver,93,ecp.arcgis.all,none,

2010-01-25

栅格数据的空间分析栅格数据的空间分析

栅格数据结构简单、直观,非常利于计算机操作和处理,是GIS常用的空间基础数据格式

2008-03-26

ArcEngine9.2.ecp

永久性的ArcEngine9.2.ecp许可文件

2008-04-08

ArcServer9.2.ecp

永久性的ArcServer9.2.ecp许可文件

2008-04-08

arcgis server9.3的永久License

arcgis server9.3的License

2010-01-25

arcgis desktop9.2

arcgis desktop9.2

2008-04-08

ArcSDE 9.3的永久 license

ArcSDE 9.3的永久 license

2010-01-25

ETL工具Kettle中文用户手册

Pentaho Data Integration 以元数据驱动的方式提供强大的抽取、转换和加载(ETL) 能力. 你当前正在使用Spoon, 这个图形化的设计工具是针对Pentaho数据集成任务和转换的. 如果你对于Pentaho Data Integration不熟悉的话, 请使用下面的链接来学习更多的内容,并且在团体里变得更加活跃

2010-01-25

三维分析1

ArcGIS具有一个能为三维可视化、三维分析以及表面生成提供高级分析功能的扩展模块3D Analyst,可以用它来创建动态三维模型和交互式地图,从而更好地实现地理数据的可视化和分析处理。

2008-03-26

ArcSDE9.2.ecp

永久ArcSDE9.2.ecp许可文件

2008-04-08

ArcIMS9.2.ecp

永久性的ArcIMS9.2.ecp许可文件

2008-04-08

JavaServer Faces

JavaServer Faces

2008-04-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除