GAN
xinxiang7
毕业上海交通大学。主要从事深度学习的算法实现和研究。目前主要用的语言是python,框架为Tensorflow。做过斗地主AI,实现过一些有趣的项目。
展开
-
GAN网络的模型坍塌和不稳定的分析
众所周知,GAN异常强大,同时也非常难以训练。主要有以下亮点原因:模型坍塌(mode collapse)难以收敛和训练不稳定(convergence and instability)GAN网络的一般表达式可以表示为:利用minmax获得公式给定G,求D的最优化针对D进行求导:获取最优解:最优解结果:KL和JS散度表达式:GAN表达式:增加一项,表示生成网络G的损失函数:简化:结合公式(6)和公式(8)可以得出:公式(12)中的KL散度使得两个分布尽可能的小原创 2020-07-07 16:45:36 · 7523 阅读 · 0 评论 -
GAN网络中的Normalization汇总
Batch NormalizationWeight NormalizationSpectral Normalization原创 2020-06-14 19:22:37 · 1040 阅读 · 0 评论 -
GAN
Generative Adversarial Nets(https://arxiv.org/pdf/1406.2661v1.pdf)是Ian大神在14年发明的新算法,后续很多算法都是在这个算法的基础上变化的。Ian利用两套神经模型—生成模型G和鉴别模型D,前者是用于获取数据的分布,后者是用于鉴别样本是来自于训练集而不是模型G生成的。如下图所示:采用的估计方法也是最大似然估计。损失为:该...原创 2019-07-11 18:02:17 · 156 阅读 · 0 评论