leetcode5 最长回文子串 python

题目:

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 的最大长度为1000。

思路:

参考了官方答案 https://leetcode-cn.com/problems/longest-palindromic-substring/solution/,写了下面几种答案

1. 中心扩展方法

    思路:扫一遍字符串s,对于回文子串长为奇数的情况,求s[i]为轴对称中心的回文子串最长值;回文子串长偶数的情况,求s[i]s[i+i] 为中心的最长值。最后求最长。时间复杂度o(n^2),因为扫一遍o(n),中心扩展也是o(n)。注意数组越界和下标。

    参考:https://blog.csdn.net/u012560212/article/details/71708982

class Solution:
    def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: str
        """
        start = end = 0
        
        for i in range(len(s)):
            len1 = self.centerexpand(s, i, i)   #回文串长度为奇数,aba
            len2 = self.centerexpand(s, i, i+1)  #回文串长度为偶数,abba
            maxlen = max(len1, len2)
            if maxlen > end - start + 1:
                start = i - (maxlen - 1)//2
                end = i + maxlen//2
        return s[start: end+1]
                
    def centerexpand(self,s,l,r):
        while l >= 0 and r < len(s) and s[l] == s[r]:
            l -= 1
            r += 1
        return r - l - 1

2.Manacher

思路:https://segmentfault.com/a/1190000003914228 
            https://www.felix021.com/blog/read.php?2040
            https://articles.leetcode.com/longest-palindromic-substring-part-ii/

    首先向字符串的空位插入'#',这样可以避免奇偶长度分类。
    然后也是扫一遍字符串,主要是记录了已访问过的最右侧字符maxright 和其对称轴pos,并加利用,避免重复访问。
    时间o(n)。
    具体的逻辑截了第一个参考链接的图,画的超棒。(侵权请联系)

需要注意下面的各种情况都是为了找RL[i]可能的最大起始点,这样就不用从0开始试了。

1)i<maxright

      (1) RL[j] 比较短的情况:(j是i关于pos的对称点)RL[i] 从RL[j] 开始

       (2)RL[j] 比较长的情况:RL[i] 从maxright - i 开始

2) i>=maxright
     RL[i] 从0开始。

class Solution:
    def longestPalindrome(self,s):
        """
        :type s: str
        :rtype: str
        """
        s = '#'+'#'.join(s)+'#'   #例如'#a#b#a#'
        pos = maxright = 0
        RL = [0]*len(s)     #RL是回文串半径,如回文串长3,RL=1,回文串长5,RL=2
        maxcenter = 0        #记录最长回文中心序号
        
        for i in range(len(s)):
            if i<maxright:              #i在maxright左侧
                RL[i] = min(maxright-i, RL[pos*2-i] )
            else:                       #i在maxright右侧(含)
                RL[i] = 0
            while i-RL[i]-1>=0 and i+RL[i]+1<len(s) and s[i-RL[i]-1] == s[i+RL[i]+1]:
                RL[i] += 1              #继续扩展(RL[j]短的情况是不需要继续扩展的,但多扩展一次也就出循环了)
            if i+RL[i] > maxright:      #更新maxright和i
                maxright = RL[i] + i
                pos = i
            if RL[i] > RL[maxcenter]:    #更新maxcenter
                maxcenter = i
        return s[maxcenter-RL[maxcenter]:maxcenter+RL[maxcenter]+1].replace('#','')

3. 正反字符串的最长公共子串

思路:官方答案的思路1。
具体实现上,求最长公共子串用动态规划参考 
https://blog.csdn.net/u012102306/article/details/53184446
如果是第一次看到,注意c[i][j]是(len+1)*(len+1)大小的,动态规划一般更新每个状态c[i][j]后才会得到答案。
像官网说的,为了区分字符串中子串非回文反向副本如abacfgcaba,要验证公共子串的索引。

class Solution:
    def longestPalindrome(self,s):
        """
        :type s: str
        :rtype: str
        """
        lens = len(s)
        maxlen = 0
        maxindex = 0
        s_rev = s[::-1]
        c = [[0]*(lens+1) for i in range(lens+1)]
        for i in range(1,lens+1):
            for j in range(1,lens+1):
                if s[i-1] == s_rev[j-1]:
                    c[i][j] = c[i-1][j-1]+1
                    if c[i][j]>maxlen and i+j-c[i][j] == lens: #验证索引
                        maxlen = c[i][j]    
                        maxindex = i
                else:
                    c[i][j] = 0
        return s[maxindex-maxlen:maxindex]

(上面这个答案...第一次提交94/103,超时。再试过了,看来还是用时比较长的方法)

根据提供的引用内容,有三种方法可以解决LeetCode上的最长回文子串问题。 方法一是使用扩展中心法优化,即从左向右遍历字符串,找到连续相同字符组成的子串作为扩展中心,然后从该中心向左右扩展,找到最长的回文子串。这个方法的时间复杂度为O(n²)。\[1\] 方法二是直接循环字符串,判断子串是否是回文子串,然后得到最长回文子串。这个方法的时间复杂度为O(n³),效率较低。\[2\] 方法三是双层for循环遍历所有子串可能,然后再对比是否反向和正向是一样的。这个方法的时间复杂度也为O(n³),效率较低。\[3\] 综上所述,方法一是解决LeetCode最长回文子串问题的最优解法。 #### 引用[.reference_title] - *1* [LeetCode_5_最长回文子串](https://blog.csdn.net/qq_38975553/article/details/109222153)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Leetcode-最长回文子串](https://blog.csdn.net/duffon_ze/article/details/86691293)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [LeetCode 第5题:最长回文子串Python3解法)](https://blog.csdn.net/weixin_43490422/article/details/126479629)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值