题目:leetcode链接
There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided input is the start and end coordinates of the horizontal diameter. Since it’s horizontal, y-coordinates don’t matter and hence the x-coordinates of start and end of the diameter suffice. Start is always smaller than end. There will be at most 104 balloons.
An arrow can be shot up exactly vertically from different points along the x-axis. A balloon with xstart and xend bursts by an arrow shot at x if xstart ≤ x ≤ xend. There is no limit to the number of arrows that can be shot. An arrow once shot keeps travelling up infinitely. The problem is to find the minimum number of arrows that must be shot to burst all balloons.
Example:
Input:
[[10,16], [2,8], [1,6], [7,12]]
Output:
2
Explanation:
One way is to shoot one arrow for example at x = 6 (bursting the balloons [2,8] and [1,6]) and another arrow at x = 11 (bursting the other two balloons).
题意: 给出一组区间,这些区间之间可能存在交叉范围,然后选择点进行射击,若射击的点是在一些区间内,则消去这写区间,求消掉所有区间所需的最少的射击数。
思路: 对区间进行排序(按左区间数字递增的顺序,若左区间数字相同,则按右区间递增的顺序),然后从左到右以此进行选择
具体代码实现:
public class Solution {
public int findMinArrowShots(int[][] points) {
if(points == null || points.length == 0){
return 0;
}
int len = points.length;
if (len == 1) {
return 1;
}
// 对points进行排序
Arrays.sort(points, new Comparator<int[]>() {
public int compare(int[] o1, int[] o2) {
if (o1[0] == o2[0]) {
return o1[1] - o2[1];
} else {
return o1[0] - o2[0];
}
}
});
int count = 1;
int arrowLimit = points[0][16];
for (int i = 1; i < len; i++) {
if (points[i][0] <= arrowLimit) {
arrowLimit = Math.min(arrowLimit, points[i][17]);
} else {
count++;
arrowLimit = points[i][18];
}
}
return count;
}
}