在读这篇博文之前,你应该认真读过我之前的逻辑回归理论,里面涉及大量的推导你应该也明白,本篇博文着重将理论结合实际案例,将逻辑回归过程完全呈现出来,并得到最优解,并能根据最优解预测结果。
因为涉及到公司业务问题,我不能将实际案例拿出来讲,但我将根据实际案例抽象出核心算法案例,如下图
图中有7个坐标(x1,x2),当然在实际中通常是(x1,x2,x3 ......xn),不过没关系,2维和N维在数学上一样的处理,因为多维没法在纸上画出,所以为了方便起见,我选择2维案例进行说明。
现在我的需求是:根据图,将7个点分成2类,并根据分类情况判断第8个随机点属于哪个类。直接上代码,这段代码大致框架你应该也熟悉,可参阅我之前的博文。
根据:
编写代码:
输出:
则h(x)为:
代码虽然不多,但里面涉及大量高等数学运算,线性代数运算,以及数据的向量化,大家可以自己动手写一遍,你会明白很多。
预测一:
当我随机取第8个点(10,1)时:
可以看出随机点(10,1)在区域y=1(即区域B)的概率100%,即(10,1)在区域B。
成功预测
预测二:
当我随机取第9个点(2,10)时:
可以看出随机点(2,10)在区域y=1(即区域B)的概率无限接近0,即(10,1)在区域A。
成功预测
本博文参阅斯坦福大学吴恩达(Andrew Ng)机器学习课程,同时感谢黄海广博士的指导,转载请标明出处