机器学习算法实现01-逻辑回归的全过程

本文结合理论与实际案例,深入讲解逻辑回归的实现过程。通过2维案例,展示了如何将数据分为两类并进行预测。通过具体代码展示逻辑回归的计算,并对两个随机点进行了成功预测。
摘要由CSDN通过智能技术生成

   在读这篇博文之前,你应该认真读过我之前的逻辑回归理论,里面涉及大量的推导你应该也明白,本篇博文着重将理论结合实际案例,将逻辑回归过程完全呈现出来,并得到最优解,并能根据最优解预测结果。

  因为涉及到公司业务问题,我不能将实际案例拿出来讲,但我将根据实际案例抽象出核心算法案例,如下图


  图中有7个坐标(x1,x2),当然在实际中通常是(x1,x2,x3 ......xn),不过没关系,2维和N维在数学上一样的处理,因为多维没法在纸上画出,所以为了方便起见,我选择2维案例进行说明。

现在我的需求是:根据图,将7个点分成2类,并根据分类情况判断第8个随机点属于哪个类。直接上代码,这段代码大致框架你应该也熟悉,可参阅我之前的博文。

根据:



编写代码:



输出:


则h(x)为:



代码虽然不多,但里面涉及大量高等数学运算,线性代数运算,以及数据的向量化,大家可以自己动手写一遍,你会明白很多。


预测一:

当我随机取第8个点(10,1)时:


可以看出随机点(10,1)在区域y=1(即区域B)的概率100%,即(10,1)在区域B。

成功预测


预测二:

当我随机取第9个点(2,10)时:


可以看出随机点(2,10)在区域y=1(即区域B)的概率无限接近0,即(10,1)在区域A。

成功预测


        本博文参阅斯坦福大学吴恩达(Andrew Ng)机器学课程,同时感谢黄海广博士的指导,转载请标明出处




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值