• 数据增强:是指通过对原始数据进行一系列变换和处理,生成新的数据样本,以扩充训练数据集的方法。在深度学习领域,数据增强被广泛应用于图像分类、目标检测、语义分割等任务中,能够有效提升模型的泛化能力和鲁棒性。
• 图像增强:是一种通过对原始图像进行处理,以改善其质量、提高其可读性和可视化效果的技术。在深度学习和人工智能领域,图像增强技术主要用于数据增强,以提高模型的泛化能力和准确性。
• 特征增强:是一种常用的数据处理方法,通过对原始数据进行一系列操作和变换,从而提取出更具代表性和区分性的特征,增强数据的表达能力和分类效果。特征增强的方法主要包括数据预处理、特征选择、特征提取和特征构建等步骤。