- 三要素方程
X ( t ) = X ( ∞ ) + [ X ( 0 + ) − X ( ∞ ) ] e − t τ ( t > 0 ) X(t)=X(\infty)+[X(0_+)-X(\infty)]e^{-\frac t\tau}\;(t>0) X(t)=X(∞)+[X(0+)−X(∞)]e−τt(t>0) - 变形
t = τ ⋅ ln X ( ∞ ) − X ( 0 + ) X ( ∞ ) − X ( t ) ( t > 0 ) τ = R C ( s ) t=\tau\cdot\ln\frac{X(\infty)-X(0_+)}{X(\infty)-X(t)}\;(t>0)\\ \tau=RC(s) t=τ⋅lnX(∞)−X(t)X(∞)−X(0+)(t>0)τ=RC(s)
X ( ∞ ) X(\infty) X(∞) 理论终点, X ( t ) X(t) X(t)实际重点
τ \tau τ 与暂态时间成正比,与充放电速度成反比。
RC充放电网络的定量计算
最新推荐文章于 2025-03-07 11:20:41 发布