可以将策略(policy)类比为一个游戏中的决策指南。假设你正在玩一个游戏,在每个游戏场景(状态)下,你需要决定下一步应该做什么(动作)。策略就是告诉你在每个场景下应该做什么的指南。
-
确定性策略:就像是一个固定的游戏攻略,比如说“在遇到敌人的时候总是向左躲避”。这意味着每次遇到相同的情况,你都会做同样的动作。
-
随机策略:就像是一个带有随机因素的攻略,比如说“在遇到敌人的时候,有70%的几率向左躲避,30%的几率向右躲避”。这意味着每次遇到相同的情况,你有一定的几率做不同的动作。
强化学习的目标就是找到一个最好的攻略,使得你在游戏中获得最高的分数或奖励。这就像是在不断尝试和改进你的策略,直到找到一个能让你在大部分情况下都能赢的最优方案。
来解释一下强化学习中的状态(state)和动作(action)。
状态(State)
状态代表了智能体在某一时刻所处的环境信息或情景。它是环境对智能体的一个观测值,可以包含各种信息。例如:
- 在棋盘游戏中,状态就是当前棋盘的布局。
- 在机器人控制中,状态可以是机器人的位置、速度、角度等。
- 在视频游戏中,状态可以是游戏画面的当前帧、角色的生命值、位置等。
状态是智能体做出决策的基础。智能体根据当前状态决定下一步该采取什么动作。
动作(Action)
动作是智能体在某一