flod弗洛伊德算法详解

弗洛伊德算法是一种求解图中任意两点间最短路径的方法,它通过逐步加入中间顶点来更新路径长度,最终得到全局的最短路径。算法以邻接矩阵存储图,初始状态为直接边的权重,逐步迭代优化,时间复杂度为O(n^3)。
摘要由CSDN通过智能技术生成


弗洛伊德算法简介:

顶点对之间的最短路径是指:对于给定的有向网G=(V,E),要对G中任意一对顶点有序对VW(V≠W),找出VW的最短距离和WV的最短距离。

解决此问题的一个有效方法是:轮流以每一个顶点为源点,

MATLAB中的Flood算法是一种基于图像处理的算法,用于将图像中的某个区域填充为指定的颜色。该算法基于种子点的像素值,将与其相邻的像素点逐一比较,如果符合条件则填充为指定颜色,直到所有符合条件的像素点都被填充。 以下是MATLAB中实现Flood算法的示例代码: ```matlab function img_out = flood_fill(img_in, seed, fill_val) % img_in: 输入图像 % seed: 种子点坐标 % fill_val: 填充颜色值 % 获取输入图像的大小 [height, width] = size(img_in); % 初始化输出图像 img_out = zeros(height, width); % 将种子点标记为已访问 visited = zeros(height, width); visited(seed(1), seed(2)) = 1; % 初始化队列 queue = [seed]; % 定义相邻像素点的坐标偏移量 offsets = [-1, 0; 1, 0; 0, -1; 0, 1]; % 开始填充 while ~isempty(queue) % 取出队首元素 curr = queue(1,:); queue(1,:) = []; % 填充当前像素点 img_out(curr(1), curr(2)) = fill_val; % 遍历相邻像素点 for i = 1:size(offsets, 1) % 计算相邻像素点的坐标 neighbor = curr + offsets(i,:); % 判断相邻像素点是否越界或已访问 if neighbor(1) < 1 || neighbor(1) > height || neighbor(2) < 1 || neighbor(2) > width || visited(neighbor(1), neighbor(2)) continue; end % 判断相邻像素点是否符合填充条件 if img_in(neighbor(1), neighbor(2)) == img_in(seed(1), seed(2)) % 将相邻像素点标记为已访问 visited(neighbor(1), neighbor(2)) = 1; % 将相邻像素点加入队列 queue = [queue; neighbor]; end end end % 将输出图像转换为uint8类型 img_out = uint8(img_out); end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值