kafka文档

  1. 介绍

Kafka是一个分布式的、可分区的、可复制的消息系统。它提供了普通消息系统的功能,但具有自己独特的设计。

 

1、1 术语:

Topic:可以理解为一个MQ消息队列的名字

Producers:将向Kafka topic发布消息的程序

Consumers:将预订topics并消费消息的程序

Broker:Kafka以集群的方式运行,可以由一个或多个服务组成,每个服务叫做一个broker。

客户端和服务端通过TCP(简单,性能高,语言无关)协议通信。

 

Topics 和Logs

一个topic是对一组消息的归纳。对每个topic,Kafka 对它的日志进行了分区,如下图所示:

每个分区都由一系列有序的、不可变的消息组成,这些消息被连续的追加到分区中。分区中的每个消息都有一个连续的序列号叫做offset,用来在分区中唯一的标识这个消息。

在一个可配置的时间段内,Kafka集群保留所有发布的消息,不管这些消息有没有被消费。比如,如果消息的保存策略被设置为2天,那么在一个消息被发布的两天时间内,它都是可以被消费的。之后它将被丢弃以释放空间。Kafka的性能是和数据量无关的常量级的,所以保留太多的数据并不是问题。

 

实际上每个consumer唯一需要维护的数据是消息在日志中的位置,也就是offset.这个offset有consumer来维护:一般情况下随着consumer不断的读取消息,这offset的值不断增加,但其实consumer可以以任意的顺序读取消息,比如它可以将offset设置成为一个旧的值来重读之前的消息。

 

以上特点的结合,使Kafka consumers非常的轻量级:它们可以在不对集群和其他consumer造成影响的情况下读取消息。你可以使用命令行来"tail"消息而不会对其他正在消费消息的consumer造成影响。

 

将日志分区可以达到以下目的:首先这使得每个日志的数量不会太大,可以在单个服务上保存。另外每个分区可以单独发布和消费,为并发操作topic提供了一种可能。

 

分布式

每个分区在Kafka集群的若干服务中都有副本,这样这些持有副本的服务可以共同处理数据和请求,副本数量是可以配置的。副本使Kafka具备了容错能力。

每个分区都由一个服务器作为“leader”,零或若干服务器作为“followers”,leader负责处理消息的读和写,followers则去复制leader.如果leader down了,followers中的一台则会自动成为leader。集群中的每个服务都会同时扮演两个角色:作为它所持有的一部分分区的leader,同时作为其他分区的followers,这样集群就会据有较好的负载均衡。

 

Producers

Producer将消息发布到它指定的topic中,并负责决定发布到哪个分区。通常简单的由负载均衡机制随机选择分区,但也可以通过特定的分区函数选择分区。使用的更多的是第二种。

 

Consumers

发布消息通常有两种模式:队列模式(queuing)和发布-订阅模式(publish-subscribe)。队列模式中,consumers可以同时从服务端读取消息,每个消息只被其中一个consumer读到;发布-订阅模式中消息被广播到所有的consumer中。Consumers可以加入一个consumer 组,共同竞争一个topic,topic中的消息将被分发到组中的一个成员中。同一组中的consumer可以在不同的程序中,也可以在不同的机器上。如果所有的consumer都在一个组中,这就成为了传统的队列模式,在各consumer中实现负载均衡。如果所有的consumer都不在不同的组中,这就成为了发布-订阅模式,所有的消息都被分发到所有的consumer中。更常见的是,每个topic都有若干数量的consumer组,每个组都是一个逻辑上的“订阅者”,为了容错和更好的稳定性,每个组由若干consumer组成。这其实就是一个发布-订阅模式,只不过订阅者是个组而不是单个consumer。

由两个机器组成的集群拥有4个分区 (P0-P3) 2个consumer组。A组有两个consumer,B组有4个。

 

相比传统的消息系统,Kafka可以很好的保证有序性。

传统的队列在服务器上保存有序的消息,如果多个consumers同时从这个服务器消费消息,服务器就会以消息存储的顺序向consumer分发消息。虽然服务器按顺序发布消息,但是消息是被异步的分发到各consumer上,所以当消息到达时可能已经失去了原来的顺序,这意味着并发消费将导致顺序错乱。为了避免故障,这样的消息系统通常使用“专用consumer”的概念,其实就是只允许一个消费者消费消息,当然这就意味着失去了并发性

 

在这方面Kafka做的更好,通过分区的概念,Kafka可以在多个consumer组并发的情况下提供较好的有序性和负载均衡。将每个分区分只分发给一个consumer组,这样一个分区就只被这个组的一个consumer消费,就可以顺序的消费这个分区的消息。因为有多个分区,依然可以在多个consumer组之间进行负载均衡。注意consumer组的数量不能多于分区的数量,也就是有多少分区就允许多少并发消费。

 

Kafka只能保证一个分区之内消息的有序性,在不同的分区之间是不可以的,这已经可以满足大部分应用的需求。如果需要topic中所有消息的有序性,那就只能让这个topic只有一个分区,当然也就只有一个consumer组消费它。

 

Partition

为了实现扩展性,一个非常大的topic可以分布到多个 broker(即服务器)上,一个topic可以分为多个partition,每个partition是一个有序的队列。partition中的每条消息 都会被分配一个有序的id(offset)。kafka只保证按一个partition中的顺序将消息发给consumer,不保证一个topic的整体 (多个partition间)的顺序。也就是说,一个topic在集群中可以有多个partition,那么分区的策略是什么?(消息发送到哪个分区上,有两种基本的策略,一是采用Key Hash算法,一是采用Round Robin算法)

Offset:kafka的存储文件都是按照offset.kafka来命名,用offset做名字的好处是方便查找。例如你想找位于2049的位置,只要找到2048.kafka的文件即可。当然the first offset就是00000000000.kafka

 

Kafka的优点:相较于大多数消息系统卡夫卡有更好的吞吐量,内置分区,复制和容错性,这使得它对于大规模信息处理应用的理想解决方案。

apache kafka 在数据处理中特删是日志和消息的处理上会有徆多出色的表现.首先弼然推荐的是 kafka 的宏 网 http://kafka.apache.org/。在宏网最值得参考的文章就是 kafka design: http://kafka.apache.org/design.html,要特删重规返篇文章,里面有好多理念都特删好,推荐多读几遍。 在 OSC 的翻译频道有 kafka design 全中文的翻译,翻得挺好的,推荐一下: http://www.oschina.net/translate/kafka-design。kafka 的 wiki 是徆丌错的学习文档: https://cwiki.apache.org/confluence/display/KAFKA/Index 接下来就是一系列文章,文章都是循序渐迕的方式带你了览 kafka: 关亍 kafka 的基本知识,分布式的基础:《分布式消息系统 Kafka 刜步》 kafka 的分布式搭建,quick start:《kafka 分布式环境搭建》 关亍 kafka 的实现细节,返主要就是讲 design 的部分:《细节上》、《细节下》 关亍 kafka 开収环境,scala 环境的搭建:《开収环境搭建》 数据生产者,producer 的用法:《producer 的用法》、《producer 使用注意》 数据消费者,consumer 的用法:《consumer 的用法》 迓有些零碎的,关亍通信段的源码览读:《net 包源码览读》、《broker 配置》 扩展的阅读迓有下面返些: 关亍 kafka 和 jafka 的相关博客,特删好,有徆多问题也都找他览决的,大神一般的存在: http://rockybean.github.com/@rockybean kafka 的 java 化版本 jafka:https://github.com/adyliu/jafka 淘宝的 metaQ:https://github.com/killme2008/Metamorphosis 最近在写的 inforQ,刚开始写,也纯粹是为了读下源码,丌定期更新: https://github.com/ielts0909/inforq
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值