hadoop的mapreduce作业中出现Java heap space,你认为该如何解决?

本文针对Hadoop MapReduce作业中常见的Java heap space错误进行了深入分析,并提供了具体的解决方案。通过调整jobConf配置文件中的-Xmx参数值,可以有效解决因内存溢出导致的任务失败问题。
摘要由CSDN通过智能技术生成

hadoop的mapreduce作业中经常出现Java heap space解决方案

“为什么我的mapreduce作业总是运行到某个阶段就报出如下错误,然后失败呢?以前同一个作业没出现过的呀?”

10/01/10 12:48:01 INFO mapred.JobClient: Task Id : attempt_201001061331_0002_m_000027_0, Status : FAILED
java.lang.OutOfMemoryError: Java heap space
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.(MapTask.java:498)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:305)
at org.apache.hadoop.mapred.Child.main(Child.java:158)

这个实际上是 Out Of Memory OOM问题。

其实这样的错误有时候并不是程序逻辑的问题(当然有可能是由于程序写的不够高效,产生的内存消耗不合理而导致),而是由于同样的作业,在数据量和数据本身发生不同时就会占据不同数量的内存空间。由于hadoop的mapreduce作业的运行机制是:在jobtracker接到客户端来的job提交后,将许多的task分配到集群中各个tasktracker上进行分块的计算,而根据代码中的逻辑可以看出,其实是在tasktracker上启了一个java进程进行运算,进程中有特定的端口和网络机制来保持map 和reduce之间的数据传输,所以,这些OOM的错误,其实就是这些java进程中报出了OOM的错误。
知道了原因以后就好办了,hadoop的mapreduce作业启动的时候,都会读取jobConf中的配置(hadoop-site.xml),只要在该配置文件中将每个task的jvm进程中的-Xmx所配置的java进程的max heap size加大,就能解决这样的问题:

<property> 
  <name>mapred.child.java.opts</name> 
  <value>-Xmx1024m</value> 
</property> 

我的xml文件中的默认配置为:

<property>
    <name>mapred.child.java.opts</name>
    <value> -Xmx72518104</value>
  </property>

PS:该选项默认是200M

新版本应该是在conf/hadoop-env.sh文件中修改。默认为1000M

转载地址:http://www.aboutyun.com/thread-8299-1-1.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值