Sentinel基本使用--基于QPS流量控制(二), 采用Warm Up预热/冷启动方式控制突增流量

一, Warm Up

Sentinel的Warm Up(RuleConstant.CONTROL_BEHAVIOR_WARM_UP)方式,即预热/冷启动方式。当系统长期处于低水位的情况下,当流量突然增加时,直接把系统拉升到高水位可能瞬间把系统压垮。通过"冷启动",让通过的流量缓慢增加,在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮。warm up冷启动主要用于启动需要额外开销的场景,例如建立数据库连接等。

二, 实例

本文结合sentinel提供的示例, 通过dashboard控制台展示warm up方式启动流量曲线变化, 

WarmUpFlowDemo类说明:

1 初始化基于QPS流控规则, 流控效果使用warm up; 阈值 : 1000, 预热时间60s;

private static void initFlowRule() {
        List<FlowRule> rules = new ArrayList<FlowRule>();
        FlowRule rule1 = new FlowRule();
        rule1.setResource(KEY);
        // 这里设置QPS最大的阈值1000, 尽量设置大一点, 便于在监控台查看流量变化曲线
        rule1.setCount(1000);
        // 基于QPS流控规则
        rule1.setGrade(RuleConstant.FLOW_GRADE_QPS);
        // 默认不区分调用来源
        rule1.setLimitApp("default");
        // 流控效果, 采用warm up冷启动方式
        rule1.setControlBehavior(RuleConstant.CONTROL_BEHAVIOR_WARM_UP);
        // 在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮。
        // warmUpPeriodSec 代表期待系统进入稳定状态的时间(即预热时长)。
        // 这里预热时间为1min, 便于在dashboard控制台实时监控查看QPS的pass和block变化曲线
        rule1.setWarmUpPeriodSec(60); // 默认值为10s

        rules.add(rule1);
        FlowRuleManager.loadRules(rules);
    }

2 启动一个TimerTask线程, 统计每一秒的pass, block, total这三个指标;

static class TimerTask implements Runnable {

        @Override
        public void run() {
            long start = System.currentTimeMillis();
            System.out.println("begin to statistic!!!");
            long oldTotal = 0;
            long oldPass = 0;
            long oldBlock = 0;
            while (!stop) {
                try {
                    TimeUnit.SECONDS.sleep(1);
                } catch (InterruptedException e) {
                }

                long globalTotal = total.get();
                long oneSecondTotal = globalTotal - oldTotal;
                oldTotal = globalTotal;

                long globalPass = pass.get();
                long oneSecondPass = globalPass - oldPass;
                oldPass = globalPass;

                long globalBlock = block.get();
                long oneSecondBlock = globalBlock - oldBlock;
                oldBlock = globalBlock;

                System.out.println("currentTimeMillis:" + TimeUtil.currentTimeMillis() + ", totalSeconds:"
                                   + TimeUtil.currentTimeMillis() / 1000 + ", currentSecond:"
                                   + (TimeUtil.currentTimeMillis() / 1000) % 60 + ", total:" + oneSecondTotal
                                   + ", pass:" + oneSecondPass + ", block:" + oneSecondBlock);

                if (seconds-- <= 0) {
                    stop = true;
                }
            }

            long cost = System.currentTimeMillis() - start;
            System.out.println("time cost: " + cost + " ms");
            System.out.println("total:" + total.get() + ", pass:" + pass.get() + ", block:" + block.get());
            System.exit(0);
        }
    }

3 同时启动三个WarmUpTask线程, 设置其休眠时间小于2s, 使系统访问资源处于一个较低的流量 .

①同时启动3个WarmUpTask线程

for (int i = 0; i < 3; i++) {
            Thread t = new Thread(new WarmUpTask());
            t.setName("sentinel-warmup-task");
            t.start();
        }

②WarmUpTask线程休眠小于2s, 通过控制休眠时间, 达到控制访问资源的流量处于一个较低的水平.

static class WarmUpTask implements Runnable {

        @Override
        public void run() {
            while (!stop) {
                Entry entry = null;
                try {
                    entry = SphU.entry(KEY);
                    // token acquired, means pass
                    pass.addAndGet(1);
                } catch (BlockException e1) {
                    block.incrementAndGet();
                } catch (Exception e2) {
                    // biz exception
                } finally {
                    total.incrementAndGet();
                    if (entry != null) {
                        entry.exit();
                    }
                }
                Random random2 = new Random();
                try {
                    // 随机休眠时间<2s, 通过设置休眠时间, 模拟访问资源的流量大小
                    TimeUnit.MILLISECONDS.sleep(random2.nextInt(2000));
                } catch (InterruptedException e) {
                    // ignore
                }
            }
        }
    }

4 WarmUpTask线程运行20s后,再同时启动100个线程, 设置其休眠时间小于50ms, 这样就模拟造成了访问资源的流量突增, 一是可以查看后台console观察流量变化数值, 而是查看监控台的实时监控, 能比较直观的看见warm up过程.

①20s后, 再同时启动100个线程

// 20s开始有突增的流量进来, 访问资源
Thread.sleep(20000);

 

②再同时启动100个线程, 模拟突增的流量访问资源

// 创建一个100线程, 模拟突增的流量访问被保护的资源
        for (int i = 0; i < threadCount; i++) {
            Thread t = new Thread(new RunTask());
            t.setName("sentinel-run-task");
            t.start();
        }

③RunTask线程休眠时间小于50ms, 这样每个线程就能多次的访问资源, 模拟造成资源被突增的流量访问. 这样对资源的访问流量就处于一个较高的水平.

static class RunTask implements Runnable {

        @Override
        public void run() {
            while (!stop) {
                Entry entry = null;
                try {
                    entry = SphU.entry(KEY);
                    pass.addAndGet(1);
                } catch (BlockException e1) {
                    block.incrementAndGet();
                } catch (Exception e2) {
                    // biz exception
                } finally {
                    total.incrementAndGet();
                    if (entry != null) {
                        entry.exit();
                    }
                }
                Random random2 = new Random();
                try {
                    // 随机休眠时间<50ms, 通过设置休眠时间, 模拟访问资源的流量大小
                    TimeUnit.MILLISECONDS.sleep(random2.nextInt(50));
                } catch (InterruptedException e) {
                    // ignore
                }
            }
        }
    }

 

三, 后台console端每秒展示pass, block, total数据.

①从下图可以很明显的看出, 有一个很明显的流量激增, total由原来的几或者几十, 突然增加到了4000左右, 而pass也是陡然的增加到了几百, block也由原来的0变成了3500左右.

②接着往下看, 由于我们设置的阈值为1000, 所以最终的pass值是稳定在1000没有问题; 流控效果采用warm up方式, pass的值不是一下子增加到1000, 而是由300-->400-->500-->600-->700-->800-->900-->1000逐渐增加的.

③最终QPS流量稳定在最大阈值1000, 如下图:

四, dashboard控制台流量曲线展示

① 下图展示的是, 访问资源的流量刚开始处于一个较低的水平, QPS大概只有3左右;

②下图可以明显的看到绿曲线p_qps是一个逐渐上升的过程, 代表着访问资源的流量逐渐变大, 最终稳定在阈值1000QPS.

 

③下图, 展示的是38分51秒左右, 经过60s的预热, QPS最终达到阈值1000. 

 

完整代码:

public class WarmUpFlowDemo {

    private static final String     KEY         = "abc";

    private static AtomicInteger    pass        = new AtomicInteger();
    private static AtomicInteger    block       = new AtomicInteger();
    private static AtomicInteger    total       = new AtomicInteger();

    private static volatile boolean stop        = false;

    private static final int        threadCount = 100;
    private static int              seconds     = 60 + 40;

    public static void main(String[] args) throws Exception {
        initFlowRule();
        // trigger Sentinel internal init
        Entry entry = null;
        try {
            entry = SphU.entry(KEY);
        } catch (Exception e) {
        } finally {
            if (entry != null) {
                entry.exit();
            }
        }

        Thread timer = new Thread(new TimerTask());
        timer.setName("sentinel-timer-task");
        timer.start();

        // first make the system run on a very low condition
        // 创建3个线程, 模拟一个系统处于一个低水平流量
        for (int i = 0; i < 3; i++) {
            Thread t = new Thread(new WarmUpTask());
            t.setName("sentinel-warmup-task");
            t.start();
        }

        // 20s开始有突增的流量进来, 访问资源
        Thread.sleep(20000);

        /*
         * Start more thread to simulate more qps. Since we use {@link RuleConstant.CONTROL_BEHAVIOR_WARM_UP} as {@link
         * FlowRule#controlBehavior}, real passed qps will increase to {@link FlowRule#count} in {@link
         * FlowRule#warmUpPeriodSec} seconds.
         */
        // 创建一个100线程, 模拟突增的流量访问被保护的资源
        for (int i = 0; i < threadCount; i++) {
            Thread t = new Thread(new RunTask());
            t.setName("sentinel-run-task");
            t.start();
        }
    }

    private static void initFlowRule() {
        List<FlowRule> rules = new ArrayList<FlowRule>();
        FlowRule rule1 = new FlowRule();
        rule1.setResource(KEY);
        // 设置最大阈值为20
        // rule1.setCount(20);
        // 这里设置QPS最大的阈值1000, 便于查看变化曲线
        rule1.setCount(1000);
        rule1.setGrade(RuleConstant.FLOW_GRADE_QPS);
        rule1.setLimitApp("default");
        rule1.setControlBehavior(RuleConstant.CONTROL_BEHAVIOR_WARM_UP);
        // 在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮。
        // warmUpPeriodSec 代表期待系统进入稳定状态的时间(即预热时长)。
        // 这里预热时间为1min, 便于在dashboard控制台实时监控查看QPS的pass和block变化曲线
        rule1.setWarmUpPeriodSec(60); // 默认值为10s

        rules.add(rule1);
        FlowRuleManager.loadRules(rules);
    }

    static class WarmUpTask implements Runnable {

        @Override
        public void run() {
            while (!stop) {
                Entry entry = null;
                try {
                    entry = SphU.entry(KEY);
                    // token acquired, means pass
                    pass.addAndGet(1);
                } catch (BlockException e1) {
                    block.incrementAndGet();
                } catch (Exception e2) {
                    // biz exception
                } finally {
                    total.incrementAndGet();
                    if (entry != null) {
                        entry.exit();
                    }
                }
                Random random2 = new Random();
                try {
                    // 随机休眠时间<2s, 通过设置休眠时间, 模拟访问资源的流量大小
                    TimeUnit.MILLISECONDS.sleep(random2.nextInt(2000));
                } catch (InterruptedException e) {
                    // ignore
                }
            }
        }
    }

    static class RunTask implements Runnable {

        @Override
        public void run() {
            while (!stop) {
                Entry entry = null;
                try {
                    entry = SphU.entry(KEY);
                    pass.addAndGet(1);
                } catch (BlockException e1) {
                    block.incrementAndGet();
                } catch (Exception e2) {
                    // biz exception
                } finally {
                    total.incrementAndGet();
                    if (entry != null) {
                        entry.exit();
                    }
                }
                Random random2 = new Random();
                try {
                    // 随机休眠时间<50ms, 通过设置休眠时间, 模拟访问资源的流量大小
                    TimeUnit.MILLISECONDS.sleep(random2.nextInt(50));
                } catch (InterruptedException e) {
                    // ignore
                }
            }
        }
    }

    static class TimerTask implements Runnable {

        @Override
        public void run() {
            long start = System.currentTimeMillis();
            System.out.println("begin to statistic!!!");
            long oldTotal = 0;
            long oldPass = 0;
            long oldBlock = 0;
            while (!stop) {
                try {
                    TimeUnit.SECONDS.sleep(1);
                } catch (InterruptedException e) {
                }

                long globalTotal = total.get();
                long oneSecondTotal = globalTotal - oldTotal;
                oldTotal = globalTotal;

                long globalPass = pass.get();
                long oneSecondPass = globalPass - oldPass;
                oldPass = globalPass;

                long globalBlock = block.get();
                long oneSecondBlock = globalBlock - oldBlock;
                oldBlock = globalBlock;

                System.out.println("currentTimeMillis:" + TimeUtil.currentTimeMillis() + ", totalSeconds:"
                                   + TimeUtil.currentTimeMillis() / 1000 + ", currentSecond:"
                                   + (TimeUtil.currentTimeMillis() / 1000) % 60 + ", total:" + oneSecondTotal
                                   + ", pass:" + oneSecondPass + ", block:" + oneSecondBlock);

                if (seconds-- <= 0) {
                    stop = true;
                }
            }

            long cost = System.currentTimeMillis() - start;
            System.out.println("time cost: " + cost + " ms");
            System.out.println("total:" + total.get() + ", pass:" + pass.get() + ", block:" + block.get());
            try {
                TimeUnit.SECONDS.sleep(60);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
            System.exit(0);
        }
    }
}

要想在将变化数据展示在dashboard控制台, 启动时需要配置:

-Dcsp.sentinel.dashboard.server=127.0.0.1:8080
-Dcsp.sentinel.api.port=8719
-Dproject.name=WarmUpFlowDemo

具体接入dashboard, 可参考上一篇博客, Sentinel基本使用--基于QPS流量控制(一), 采用默认快速失败/直接拒绝策略控制超过阈值的流量(结合Dashboard使用)

五, 总结

上面主要讲述了QPS流量控制, 采用Warm Up预热/冷启动方式控制突增流量, 通过在后台console观察数据以及结合dashboard图表的形式, 能很清晰的了解到warm up冷启动方式控制突增流量, 保护资源, 维护系统的稳定性的.

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值