Llama 3 + Groq 是 AI 天堂

www.bccgpt.com
我们将为生成式人工智能新闻搜索创建一个后端。我们将使用通过 Groq 的 LPU 提供服务的 Meta 的 Llama-3 8B 模型。

关于Groq
如果您还没有听说过 Groq,那么让我为您介绍一下。 Groq 正在为大型语言模型 (LLM) 中文本生成的推理速度设定新标准。 Groq 提供 LPU(语言处理单元)接口引擎,这是一种新型的端到端处理单元系统,可为计算密集型应用程序提供最快的推理,并为其提供顺序组件,如法学硕士。

我们不会深入探讨与 GPU 相比,Groq 上的推理速度有多快。我们希望利用 Groq 和 Llama 3 文本生成功能提供的速度提升来创建生成式 AI 新闻搜索。这将类似于 Bing AI 搜索、Google AI 搜索或 PPLX。

为什么是LLama 3?
Meta 最近发布的 Llama 3 型号大受欢迎。更大的 70B Llama 3 型号目前在 LMSys LLM 排行榜上排名第五。在英语任务中,同一模型排名第二,仅次于 GPT-4。
www.bccgpt.com

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
LLaMA+Alpaca是一个基于PyTorch的自然语言处理框架,主要用于生成式对话模型的训练和部署。以下是搭建、部署、训练LLaMA+Alpaca的步骤: 1. 安装依赖项:在安装LLaMA+Alpaca之前需要安装以下依赖项: - Python 3.7或更高版本 - PyTorch 1.7或更高版本 - Transformers 4.0或更高版本 - Flask 2. 下载代码:可以从LLaMA+Alpaca的GitHub页面上下载代码,也可以使用以下命令从GitHub上克隆代码: ``` git clone https://github.com/microsoft/LLaMA.git ``` 3. 部署:可以使用以下命令启动LLaMA+Alpaca的部署: ``` cd LLaMA/deployment python app.py ``` 这将会在本地启动一个Flask服务器并提供对话API。 4. 训练模型:可以使用以下命令在LLaMA+Alpaca上训练对话模型: ``` python train.py \ --dataset_path <path-to-dataset> \ --tokenizer_name <tokenizer-name> \ --model_name_or_path <model-name-or-path> \ --output_dir <output-dir> \ --num_train_epochs <num-epochs> \ --per_device_train_batch_size <batch-size> \ --gradient_accumulation_steps <accumulation-steps> \ --learning_rate <learning-rate> ``` 其中,\<path-to-dataset>是对话数据集的路径,\<tokenizer-name>和\<model-name-or-path>分别是使用的tokenizer和模型名称或路径,\<output-dir>是输出路径,\<num-epochs>是训练的epoch数,\<batch-size>是每个GPU上的批量大小,\<accumulation-steps>是梯度累积步骤数,\<learning-rate>是学习率。 5. 部署新模型:可以使用以下命令将新训练的模型部署到Flask服务器上: ``` python update_model.py \ --model_path <path-to-model> \ --tokenizer_name <tokenizer-name> \ --model_name <model-name> ``` 其中,\<path-to-model>是新训练的模型路径,\<tokenizer-name>是使用的tokenizer名称,\<model-name>是新模型名称。 以上就是搭建、部署、训练LLaMA+Alpaca的步骤。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IntelliRealam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值