最大子列和

1、暴力破解法(直接法)

int MaxSubsequenceSum(const int A[], int N)
{
	int MaxSum, ThisSum, i, j, k;
	MaxSum = 0;//初始化最大子列和
	for (int i = 0; i < N; ++i)//i是子列左端位置
	{
		for (int j = i; j < N; ++j)//j是子列右端位置
		{
			ThisSum = 0;
			for (int k = i; k <= j; ++k)//计算A[i]到A[j]的子列和
			{
				ThisSum += A[k];
			}
			if (ThisSum>MaxSum)//如果新的子列和更大,则更新子列和
				MaxSum = ThisSum;
				
		}
	}
	return MaxSum;
}

时间复杂度O(N3)

2、对直接法的优化

int MaxSubsequenceSum(const int A[], int N)
{
	int MaxSum, ThisSum, i, j;
	MaxSum = 0;//初始化最大子列和
	for (int i = 0; i < N; ++i)//i是子列左端位置
	{
		ThisSum = 0;//ThisSum是从A[i]到A[j]的子列和
		for (int j = i; j < N; ++j)
		{
			ThisSum += A[j];//对于相同的i不同的j,只需要在原来的基础上累加一项即可
			if (ThisSum>MaxSum)
				MaxSum = ThisSum;
		}
			
	}
	return MaxSum;
}

时间复杂度O(N2)

3、分治法

时间复杂度O(NlogN)

4、“在线”算法

  1. 思想:如果整数序列{a1,a2,...an}的最大子列和为{ai,ai+1,...aj},则对任意的i<l<j,ai到aj的和都大于等于0;一旦发现当前子列为负,则可以考虑换一个新的子列。
  2. 代码:
    int MaxSubsequenceSum(const int A[], int N)
    {
    	int MaxSum, ThisSum, i;
    	MaxSum = 0;//初始化最大子列和
    	ThisSum = 0;
    	for (int i = 0; i < N; ++i)
    	{
    		ThisSum += A[i];
    		if (ThisSum>MaxSum)
    			MaxSum = ThisSum;
    		else if (ThisSum < 0)
    			ThisSum = 0;
    	}
    	return MaxSum;
    }
  3. 时间复杂度O(N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值